12 research outputs found

    Behavior of Control and Inhibitive Polyaspartic Coatings Using Alkylammonium and Zinc Phosphate Corrosion Inhibitors in Soil

    Get PDF
    This study is part of an anti-corrosion coating development project at CHEMSYSTEMS. The corrosion performance was assessed through erosion, immersion and soil corrosion experiments. The erosion results have previously been published. This article discusses the impact of soil on control polyaspartic coatings used to protect concrete and the modified polyaspartic coating intended to protect underground steel substrates. The modified polyaspartic coating was boosted with a micaceous iron oxide barrier, a liquid alkylammonium corrosion inhibitor, a powdered zinc phosphate corrosion inhibitor and a novel hardener. The surface finish of the steel samples was of a milled and blasted nature (SA 2.5). The coating was applied directly to the metal without the application of a primer or second layer of coating. The average thickness of the coating was 220±10 ”m as a direct-to-metal protection system. The experiments were conducted in soil at room temperature (RT) and 35°C over 30 days. The experimental results of the control polyaspartic coating loaded on steel substrates exhibited severe blistering. The polyaspartic coating dispersed with a liquid alkylammonium inhibitor also exhibited blistering, whereas the modified polyaspartic coating with a zinc phosphate corrosion inhibitor showed an adequate degree of resistance to the impact of soil under the evaluated conditions. The results confirmed that the presence of a zinc phosphate corrosion inhibitor in combination with a micaceous iron oxide barrier improved the resistance of the coating to the evaluated soils in which it was positioned and at the investigated temperatures

    Diagnostic accuracy of cerebrospinal fluid protein markers for sporadic Creutzfeldt-Jakob disease in Canada: a 6-year prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To better characterize the value of cerebrospinal fluid (CSF) proteins as diagnostic markers in a clinical population of subacute encephalopathy patients with relatively low prevalence of sporadic Creutzfeldt-Jakob disease (sCJD), we studied the diagnostic accuracies of several such markers (14-3-3, tau and S100B) in 1000 prospectively and sequentially recruited Canadian patients with clinically suspected sCJD.</p> <p>Methods</p> <p>The study included 127 patients with autopsy-confirmed sCJD (prevalence = 12.7%) and 873 with probable non-CJD diagnoses. Standard statistical measures of diagnostic accuracy were employed, including sensitivity (Se), specificity (Sp), predictive values (PVs), likelihood ratios (LRs), and Receiver Operating Characteristic (ROC) analysis.</p> <p>Results</p> <p>At optimal cutoff thresholds (empirically selected for 14-3-3, assayed by immunoblot; 976 pg/mL for tau and 2.5 ng/mL for S100B, both assayed by ELISA), Se and Sp respectively were 0.88 (95% CI, 0.81-0.93) and 0.72 (0.69-0.75) for 14-3-3; 0.91 (0.84-0.95) and 0.88 (0.85-0.90) for tau; and 0.87 (0.80-0.92) and 0.87 (0.84-0.89) for S100B. The observed differences in Sp between 14-3-3 and either of the other 2 markers were statistically significant. Positive LRs were 3.1 (2.8-3.6) for 14-3-3; 7.4 (6.9-7.8) for tau; and 6.6 (6.1-7.1) for S100B. Negative LRs were 0.16 (0.10-0.26) for 14-3-3; 0.10 (0.06-0.20) for tau; and 0.15 (0.09-0.20) for S100B. Estimates of areas under ROC curves were 0.947 (0.931-0.961) for tau and 0.908 (0.888-0.926) for S100B. Use of interval LRs (iLRs) significantly enhanced accuracy for patient subsets [<it>e.g</it>., 41/120 (34.2%) of tested sCJD patients displayed tau levels > 10,000 pg/mL, with an iLR of 56.4 (22.8-140.0)], as did combining tau and S100B [<it>e.g</it>., for tau > 976 pg/mL and S100B > 2.5 ng/mL, positive LR = 18.0 (12.9-25.0) and negative LR = 0.02 (0.01-0.09)].</p> <p>Conclusions</p> <p>CSF 14-3-3, tau and S100B proteins are useful diagnostic markers of sCJD even in a low-prevalence clinical population. CSF tau showed better overall diagnostic accuracy than 14-3-3 or S100B. Reporting of quantitative assay results and combining tau with S100B could enhance case definitions used in diagnosis and surveillance of sCJD.</p

    Mesoporous CuO/TiO2 catalysts prepared by the ammonia driven deposition precipitation method for CO preferential oxidation: Effect of metal loading

    No full text
    Supported CuO catalysts onto a highly crystalline mesoporous TiO2 material are produced via an ammonium driven deposition precipitation method and tested for prefere degrees ntial oxidation of CO in H-2-rich gases. The effect of Cu loading on the oxidation activity is investigated by producing samples with final Cu content varying between 2.5 and 10 wt%. According to the analysis results, the chemical nature of the CuO species differs in each sample depending on the Cu loading. All materials tested are highly selective towards CO oxidation up to 160 degrees C. The 5 wt% Cu loaded material demonstrates the optimum CO-PROX performance, which is ascribed to the formation of finely dispersed and easily reducible copper oxide nanoparticles. Stability and durability of the latter sample are assessed by performing multiple testing cycles corresponding to >100hrs on stream as well as by the separate and combined addition of CO2 and H2O in the feeding stream

    ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts

    No full text
    International audienceThis research presents a novel approach for developing noble metal-free three-way catalysts by using ZnAl layered double hydroxide (LDH) co-precipitated with Mn and Ti. Cu was added as the catalytically active metal. Two methods were explored, namely the addition of Cu during the co-precipitation step and a post-synthesis method using the LDH memory effect. In case the starting material had LDH characteristics high amounts of CuO were adsorbed on the support and high dispersion degrees of CuO were obtained. A four-cycle three-way catalysis test was used for evaluation. The smaller CuO particle size resulted in better performance for oxidation reactions. The addition of Mn had a positive effect on the general performance of the catalysts, while the presence of Ti mainly improved the NO conversion. The developed materials showed good stability in consecutive catalytic testing cycles and even show some NO conversion under stoichiometric conditions. The developed CuO-based ZnAl layered double hydroxide-based materials are very promising catalysts for Three-way catalysis, allowing to reduce the precious metal content compared to the classical catalysts composition
    corecore