75 research outputs found

    Evolution of Broader Impacts

    Get PDF
    This work is supported by the National Science Foundation under grant number OIA-1810732 and MCB-1940655, the Kavli Foundation and the Burroughs Wellcome Fund. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation, the Kavli Foundation or Burroughs Wellcome Fund

    Structure-based programming of lymph-node targeting in molecular vaccines

    Get PDF
    In cancer patients, visual identification of sentinel lymph nodes (LNs) is achieved by the injection of dyes that bind avidly to endogenous albumin, targeting these compounds to LNs, where they are efficiently filtered by resident phagocytes1, 2. Here we translate this ‘albumin hitchhiking’ approach to molecular vaccines, through the synthesis of amphiphiles (amph-vaccines) comprising an antigen or adjuvant cargo linked to a lipophilic albumin-binding tail by a solubility-promoting polar polymer chain. Administration of structurally optimized CpG-DNA/peptide amph-vaccines in mice resulted in marked increases in LN accumulation and decreased systemic dissemination relative to their parent compounds, leading to 30-fold increases in T-cell priming and enhanced anti-tumour efficacy while greatly reducing systemic toxicity. Amph-vaccines provide a simple, broadly applicable strategy to simultaneously increase the potency and safety of subunit vaccines.David H. Koch Institute for Integrative Cancer Research at MIT (Koch Institute Support (core) Grant P30-CA14051)National Cancer Institute (U.S.)National Institutes of Health (U.S.) (grant AI091693)National Institutes of Health (U.S.) (grant AI104715)National Institutes of Health (U.S.) (AI095109)United States. Dept. of Defense (contract W911NF-13-D-0001)United States. Dept. of Defense (contract W911NF-07-D-0004)Ragon Institute of MGH, MIT, and Harvar

    The Portuguese version of the Psychological Adjustment to Separation Test-Part A (PAST-A): a study with recently and non-recently divorced adults

    Get PDF
    Past research has demonstrated that divorced adults show more health problems and psychological distress than married adults. Considering the high prevalence rates of divorce among Western countries, new and robust measures should be developed to measure psychological distress after this specific transition in adulthood. The aim of this study was to adapt and validate a Portuguese version of the Psychological Adjustment to Separation Test-Part A (PAST-A; Sweeper and Halford in J Family Psychol 20(4):632–640, 2006). PAST-A is a self-report measure that assesses two key dimensions of separation adjustment problems: lonely-negativity and former partner attachment. Psychometric properties of the Portuguese version of PAST-A were assessed in terms of factor structure, internal consistency, and convergent and divergent validity, in an online convenience sample with divorced adults (N = 460). The PAST-A two-factor structure was confirmed by exploratory and confirmatory factor analyses, with each factor demonstrating very satisfactory internal consistency and good convergence. In terms of discriminant validity, the Portuguese PAST-A reveals a distinct factor from psychological growth after divorce. The results provided support for the use of the Portuguese PAST-A with divorced adults and also suggested that the explicative factors of the psychological adjustment to divorce may be cross-cultural stable. The non-existence of validated divorce-related well-being measures and its implications for divorce research are also discussed

    Prioritizing Management of Non-Native Eurasian Watermilfoil Using Species Occurrence and Abundance Predictions

    No full text
    Prioritizing the prevention and control of non-native invasive species requires understanding where introductions are likely to occur and cause harm. We developed predictive models for Eurasian watermilfoil (EWM) (Myriophyllum spicatum L.) occurrence and abundance to produce a smart prioritization tool for EWM management. We used generalized linear models (GLMs) to predict species occurrence and extended beta regression models to predict abundance from data collected on 657 Wisconsin lakes. Species occurrence was positively related to the nearby density of vehicle roads, maximum air temperature, lake surface area, and maximum lake depth. Species occurrence was negatively related to near-surface lithological calcium oxide content, annual air temperature range, and average distance to all known source populations. EWM abundance was positively associated with conductivity, maximum air temperature, mean distance to source, and soil erodibility, and negatively related to % surface rock calcium oxide content and annual temperature range. We extended the models to generate occurrence and predictions for all lakes in Wisconsin greater than 1 ha (N = 9825), then prioritized prevention and management, placing highest priority on lakes likely to experience EWM introductions and support abundant populations. This modelling effort revealed that, although EWM has been present for several decades, many lakes are still vulnerable to introduction

    Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein

    Get PDF
    The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities
    corecore