248 research outputs found

    Impaired Phagocytosis in Localized Aggressive Periodontitis: Rescue by Resolvin E1

    Get PDF
    Resolution of inflammation is an active temporally orchestrated process demonstrated by the biosynthesis of novel proresolving mediators. Dysregulation of resolution pathways may underlie prevalent human inflammatory diseases such as cardiovascular diseases and periodontitis. Localized Aggressive Periodontitis (LAP) is an early onset, rapidly progressing form of inflammatory periodontal disease. Here, we report increased surface P-selectin on circulating LAP platelets, and elevated integrin (CD18) surface expression on neutrophils and monocytes compared to healthy, asymptomatic controls. Significantly more platelet-neutrophil and platelet-monocyte aggregates were identified in circulating whole blood of LAP patients compared with asymptomatic controls. LAP whole blood generates increased pro-inflammatory LTB4 with addition of divalent cation ionophore A23187 (5 µM) and significantly less, 15-HETE, 12-HETE, 14-HDHA, and lipoxin A4. Macrophages from LAP subjects exhibit reduced phagocytosis. The pro-resolving lipid mediator, Resolvin E1 (0.1–100 nM), rescues the impaired phagocytic activity in LAP macrophages. These abnormalities suggest compromised resolution pathways, which may contribute to persistent inflammation resulting in establishment of a chronic inflammatory lesion and periodontal disease progression

    Direct Recognition of Fusobacterium nucleatum by the NK Cell Natural Cytotoxicity Receptor NKp46 Aggravates Periodontal Disease

    Get PDF
    Periodontitis is a common human chronic inflammatory disease that results in the destruction of the tooth attachment apparatus and tooth loss. Although infections with periopathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are essential for inducing periodontitis, the nature and magnitude of the disease is determined by the host's immune response. Here, we investigate the role played by the NK killer receptor NKp46 (NCR1 in mice), in the pathogenesis of periodontitis. Using an oral infection periodontitis model we demonstrate that following F. nucleatum infection no alveolar bone loss is observed in mice deficient for NCR1 expression, whereas around 20% bone loss is observed in wild type mice and in mice infected with P. gingivalis. By using subcutaneous chambers inoculated with F. nucleatum we demonstrate that immune cells, including NK cells, rapidly accumulate in the chambers and that this leads to a fast and transient, NCR1-dependant TNF-α secretion. We further show that both the mouse NCR1 and the human NKp46 bind directly to F. nucleatum and we demonstrate that this binding is sensitive to heat, to proteinase K and to pronase treatments. Finally, we show in vitro that the interaction of NK cells with F. nucleatum leads to an NCR1-dependent secretion of TNF-α. Thus, the present study provides the first evidence that NCR1 and NKp46 directly recognize a periodontal pathogen and that this interaction influences the outcome of F. nucleatum-mediated periodontitis

    SOCS2-Induced Proteasome-Dependent TRAF6 Degradation: A Common Anti-Inflammatory Pathway for Control of Innate Immune Responses

    Get PDF
    Pattern recognition receptors and receptors for pro-inflammatory cytokines provide critical signals to drive the development of protective immunity to infection. Therefore, counter-regulatory pathways are required to ensure that overwhelming inflammation harm host tissues. Previously, we showed that lipoxins modulate immune response during infection, restraining inflammation during infectious diseases in an Aryl hydrocarbon receptor (AhR)/suppressors of cytokine signaling (SOCS)2-dependent-manner. Recently, Indoleamine-pyrrole 2,3- dioxygenase (IDO)-derived tryptophan metabolites, including L-kynurenine, were also shown to be involved in several counter-regulatory mechanisms. Herein, we addressed whether the intracellular molecular events induced by lipoxins mediating control of innate immune signaling are part of a common regulatory pathway also shared by L-kynurenine exposure. We demonstrate that Tumor necrosis factor receptor-associated factor (TRAF)6 – member of a family of adapter molecules that couple the TNF receptor and interleukin-1 receptor/Toll-like receptor families to intracellular signaling events essential for the development of immune responses – is targeted by both lipoxins and L-kynurenine via an AhR/SOCS2-dependent pathway. Furthermore, we show that LXA4- and L-kynurenine-induced AhR activation, its subsequent nuclear translocation, leading SOCS2 expression and TRAF6 Lys47-linked poly-ubiquitination and proteosome-mediated degradation of the adapter proteins. The in vitro consequences of such molecular interactions included inhibition of TLR- and cytokine receptor-driven signal transduction and cytokine production. Subsequently, in vivo proteosome inhibition led to unresponsiveness to lipoxins, as well as to uncontrolled pro-inflammatory reactions and elevated mortality during toxoplasmosis. In summary, our results establish proteasome degradation of TRAF6 as a key molecular target for the anti-inflammatory pathway triggered by lipoxins and L-kynurenine, critical counter-regulatory mediators in the innate and adaptive immune systems

    Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in Wistar rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study investigated the effects of venlafaxine, an antidepressant drug with immunoregulatory properties on the inflammatory response and bone loss associated with experimental periodontal disease (EPD).</p> <p>Materials and Methods</p> <p>Wistar rats were subjected to a ligature placement around the second upper left molar. The treated groups received orally venlafaxine (10 or 50 mg/kg) one hour before the experimental periodontal disease induction and daily for 10 days. Vehicle-treated experimental periodontal disease and a sham-operated (SO) controls were included. Bone loss was analyzed morphometrically and histopathological analysis was based on cell influx, alveolar bone, and cementum integrity. Lipid peroxidation quantification and immunohistochemistry to TNF-α and iNOS were performed.</p> <p>Results</p> <p>Experimental periodontal disease rats showed an intense bone loss compared to SO ones (SO = 1.61 ± 1.36; EPD = 4.47 ± 1.98 mm, p < 0.001) and evidenced increased cellular infiltration and immunoreactivity for TNF-α and iNOS. Venlafaxine treatment while at low dose (10 mg/kg) afforded no significant protection against bone loss (3.25 ± 1.26 mm), a high dose (50 mg/kg) caused significantly enhanced bone loss (6.81 ± 3.31 mm, p < 0.05). Venlafaxine effectively decreased the lipid peroxidation but showed no significant change in TNF-α or iNOS immunoreactivity.</p> <p>Conclusion</p> <p>The increased bone loss associated with high dose venlafaxine may possibly be a result of synaptic inhibition of serotonin uptake.</p
    • …
    corecore