24 research outputs found

    An intranasal ASO therapeutic targeting SARS-CoV-2

    Get PDF
    The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs). We identify an LNA ASO binding to the 5′ leader sequence of SARS-CoV-2 that disrupts a highly conserved stem-loop structure with nanomolar efficacy in preventing viral replication in human cells. Daily intranasal administration of this LNA ASO in the COVID-19 mouse model potently suppresses viral replication (>80-fold) in the lungs of infected mice. We find that the LNA ASO is efficacious in countering all SARS-CoV-2 “variants of concern” tested both in vitro and in vivo. Hence, inhaled LNA ASOs targeting SARS-CoV-2 represents a promising therapeutic approach to reduce or prevent transmission and decrease severity of COVID-19 in infected individuals. LNA ASOs are chemically stable and can be flexibly modified to target different viral RNA sequences and could be stockpiled for future coronavirus pandemics

    LONGITUDINAL CHANGES IN SHOULDER ROM AND STRENGTH IN ASSOCIATION WITH BALL-THROWING SPEED IN ELITE YOUTH BASEBALL PITCHERS

    No full text
    The purpose of this prospective study was to examine the longitudinal changes in shoulder ER ROM and relative IR strength in elite youth baseball pitchers over one year and to determine their associations with changes in ball speed for throwing fastballs. One hundred and five Dutch elite youth baseball pitchers were measured three times over a period of one year. Statistical analyses of the data revealed that changes in ER ROM and relative IR strength were not significantly associated with changes in ball-throwing speed

    Asymmetry and evolution over a one-year period of the upward rotation of the scapula in youth baseball pitchers

    No full text
    The pitching motion is an asymmetric action by which coordination of scapular rotation in the dominant arm might be affected in time and in comparison with the non-dominant arm. The study aimed to compare asymmetry and the evolution of scapular upward rotation over a one-year period. Data were collected twice, before and after a one-year period, from 92 participants (age = 15.1 SD 1.4 years, body height = 177.3 SD 10.9 cm, body weight 69.2 SD 14.5 kg). Scapular motion was tracked at different glenohumeral angles of elevation in the scapular plane: anatomical position (0°), 45°, 90° and 135°. Scapular upward rotation was calculated as the angle between the spinae scapula and the spine. Scapular upward rotation of the dominant arm was 5.1° (95% CI: 2.1°−8.1°) more compared to the non-dominant arm. Age group or glenohumeral angles of elevation did not affect this difference. Scapular upward rotation of the dominant arm decreased 1.9° (95% CI: −0.5° to 4.3°) after a one-year period, however, neither this observation, nor the interaction with age group or elevation angle was significant. These findings may indicate that pitchers could be at risk to develop shoulder injuries especially those that have been associated with scapular asymmetry

    Cross-Cultural Adaption and Validation of the Dutch Version of the Kerlan-Jobe Orthopaedic Clinic Questionnaire in Juvenile Baseball Pitchers

    No full text
    Monitoring the performance and functional status of baseball pitchers’ upper extremity is important in maintaining the athlete’s health and performance. This study validated a Dutch translation of the original English Kerlan-Jobe Orthopaedic Clinic (KJOC) against the previously validated Disabilities of the Arm, Shoulder and Hand (DASH) and Western Ontario Shoulder Instability Index (WOSI) questionnaires in a group of talented juvenile Dutch baseball pitchers. Three times, from 2014–2016, 107 pitchers completed the Dutch KJOC, DASH and WOSI questionnaires. Participants’ questionnaire scores were analysed for the whole group and the symptomatic player subgroup separately. Internal consistency, construct validity and ceiling and floor effects were examined. Cronbach’s alpha was consistently above 0.8 for the three time periods for the whole group, and ranged between 0.62 and 0.86 for the symptomatic subgroup. Spearman’s rank correlation coefficients ranged from 0.47 to 0.67 for the whole group and 0.32 to 0.99 for the symptomatic subgroup. No floor effects were observed in the scores of the KJOC and only a ceiling effect for the whole group (15.2%) at one time period. The Dutch version of the KJOC has shown acceptable internal consistency and construct validity and can be used to assess overhead athletes’ shoulder and elbow functionality.Biomechatronics & Human-Machine Contro

    IFN-γ-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1α.

    No full text
    The prevailing model of protective immunity to tuberculosis is that CD4 T cells produce the cytokine IFN-γ to activate bactericidal mechanisms in infected macrophages. Although IFN-γ-independent CD4 T cell based control of M. tuberculosis infection has been demonstrated in vivo it is unclear whether CD4 T cells are capable of directly activating macrophages to control infection in the absence of IFN-γ. We developed a co-culture model using CD4 T cells isolated from the lungs of infected mice and M. tuberculosis-infected murine bone marrow-derived macrophages (BMDMs) to investigate mechanisms of CD4 dependent control of infection. We found that even in the absence of IFN-γ signaling, CD4 T cells drive macrophage activation, M1 polarization, and control of infection. This IFN-γ-independent control of infection requires activation of the transcription factor HIF-1α and a shift to aerobic glycolysis in infected macrophages. While HIF-1α activation following IFN-γ stimulation requires nitric oxide, HIF-1α-mediated control in the absence of IFN-γ is nitric oxide-independent, indicating that distinct pathways can activate HIF-1α during infection. We show that CD4 T cell-derived GM-CSF is required for IFN-γ-independent control in BMDMs, but that recombinant GM-CSF is insufficient to control infection in BMDMs or alveolar macrophages and does not rescue the absence of control by GM-CSF-deficient T cells. In contrast, recombinant GM-CSF controls infection in peritoneal macrophages, induces lipid droplet biogenesis, and also requires HIF-1α for control. These results advance our understanding of CD4 T cell-mediated immunity to M. tuberculosis, reveal important differences in immune activation of distinct macrophage types, and outline a novel mechanism for the activation of HIF-1α. We establish a previously unknown functional link between GM-CSF and HIF-1α and provide evidence that CD4 T cell-derived GM-CSF is a potent bactericidal effector
    corecore