5 research outputs found

    Bottom and Suspended Sediment Backscatter Measurements in a Flume—Towards Quantitative Bed and Water Column Properties

    Get PDF
    For health and impact studies of water systems, monitoring underwater environments is essential, for which multi-frequency single- and multibeam echosounders are commonly used state-of-the-art technologies. However, the current scarcity of sediment reference datasets of both bottom backscatter angular response and water column scattering hampers empirical data interpretation. Comprehensive reference data derived from measurements in a controlled environment should optimize the use of empirical backscatter data. To prepare for such innovative experiments, we conducted a feasibility experiment in the Delta Flume (Deltares, The Netherlands). Several configurations of sonar data were recorded of the flume floor and suspended sediment plumes. The results revealed that flume reverberation was sufficiently low and that the differential settling of fine-sand plumes in the water column was clearly detected. Following this successful feasibility test, future comprehensive experiments will feature multi-frequency multi-angle measurements on a variety of sediment types, additional scatterers and sediment plumes, resulting in reference datasets for an improved interpretation of underwater backscatter measurements for scientific observation and sustainable management

    Dune morphology and hysteresis in alluvial channels during long-duration floods revealed using high temporal-resolution MBES bathymetry

    No full text
    In natural rivers, flow discharge may fluctuate across a range of time scales – from diurnal to seasonal - but is often most pronounced during hydrographs that may encompass long-duration floods. Under these varying flows, bedforms can be created and modified by the flow without achieving any ‘equilibrium’ state. A lag between changes in flow and the morphological response of the bedforms, termed bedform hysteresis, is commonly present. Importantly for channel management and navigation, since dunes may grow larger during floods, but often experience a lagged decay in size during lowering water levels, critical water depths may be reached for inland shipping. There is also a consensus that dunes possess a more flattened shape, and lower leeside angle, than previously assumed in large rivers and that such dunes do not exhibit a region of permanent flow separation downstream of the dune. This different leeside shape thus questions traditional ideas of flow interactions with dunes, where flow separation in the steep dune lee side leads to energy loss (form drag) that increases flow resistance and energy expenditure within the flow. This paper quantifies dune hysteresis in the River Waal, Netherlands, by investigating how dune morphology changes through flood hydrographs, using high spatial- and temporal- resolution bathymetric data and robust computational analysis methods to produce probability density functions of dune morphology. This quantification aims to provide a better understanding of dune hysteresis in large rivers. The analysis examines several large data sets of river bathymetry from a 13 km reach of the River Waal, Netherlands, in a time series of bi-weekly multibeam echo sounder surveys over the last 12 years. Parameterization includes dune height, wavelength, leeside angle and leeside shape, to assess dune kinematics and hysteresis during different flood hydrographs.Rivers, Ports, Waterways and Dredging Engineerin

    A Multispectral Bayesian Classification Method for Increased Acoustic Discrimination of Seabed Sediments Using Multi-Frequency Multibeam Backscatter Data

    No full text
    Multi-frequency backscatter data collected from multibeam echosounders (MBESs) is increasingly becoming available. The ability to collect data at multiple frequencies at the same time is expected to allow for better discrimination between seabed sediments. We propose an extension of the Bayesian method for seabed classification to multi-frequency backscatter. By combining the information retrieved at single frequencies we produce a multispectral acoustic classification map, which allows us to distinguish more seabed environments. In this study we use three triple-frequency (100, 200, and 400 kHz) backscatter datasets acquired with an R2Sonic 2026 in the Bedford Basin, Canada in 2016 and 2017 and in the Patricia Bay, Canada in 2016. The results are threefold: (1) combining 100 and 400 kHz, in general, reveals the most additional information about the seabed; (2) the use of multiple frequencies allows for a better acoustic discrimination of seabed sediments than single-frequency data; and (3) the optimal frequency selection for acoustic sediment classification depends on the local seabed. However, a quantification of the benefit using multiple frequencies cannot clearly be determined based on the existing ground-truth data. Still, a qualitative comparison and a geological interpretation indicate an improved discrimination between different seabed environments using multi-frequency backscatter

    Separating bathymetric data representing multiscale rhythmic bed forms: A geostatistical and spectral method compared

    Get PDF
    The superimposition of rhythmic bed forms of different spatial scales is a common and natural phenomenon on sandy seabeds. The dynamics of such seabeds may interfere with different offshore activities and are therefore of interest to both scientists and offshore developers. State-of-the-art echo sounding accuracy allows for the analysis of bed form dynamics on unprecedented spatial and temporal scales. However, the superimposition of bed forms complicates the automated determination of morphodynamic parameters of individual bed form components. In this research we present the extension and comparison of two well-known, automated signal-processing methods for the 1-D and 2-D separation of bathymetric data derived from multibeam echo soundings into different components that each represents a bed form of a particular length scale. One method uses geostatistical filtering, and the other uses a Fourier decomposition of the bathymetric data. The application of both methods in two case studies of the North Sea shows that both methods are successful and that results correspond well. For example, megaripples up to 0.83 m height could be separated from 1.49–2.28 m high sand waves, and regionally averaged lengths and heights of sand waves, as calculated in either method, differ only 0.42–8.2% between methods. The obtained sand wave migration rates differ 7–11% between methods. The resulting morphometric and morphodynamic bed form quantification contributes to studies of empirical behavior and morphodynamic model validation and is valuable in risk assessments of offshore human activities.Remote SensingAerospace Engineerin
    corecore