28 research outputs found

    HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion

    Get PDF
    Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis

    Differential effects of human and plant N-acetylglucosaminyltransferase I (GnTI) in plants

    Get PDF
    In plants and animals, the first step in complex type N-glycan formation on glycoproteins is catalyzed by N-acetylglucosaminyltransferase I (GnTI). We show that the cgl1-1 mutant of Arabidopsis, which lacks GnTI activity, is fully complemented by YFP-labeled plant AtGnTI, but only partially complemented by YFP-labeled human HuGnTI and that this is due to post-transcriptional events. In contrast to AtGnTI-YFP, only low levels of HuGnTI-YFP protein was detected in transgenic plants. In protoplast co-transfection experiments all GnTI-YFP fusion proteins co-localized with a Golgi marker protein, but only limited co-localization of AtGnTI and HuGnTI in the same plant protoplast. The partial alternative targeting of HuGnTI in plant protoplasts was alleviated by exchanging the membrane-anchor domain with that of AtGnTI, but in stably transformed cgl1-1 plants this chimeric GnTI still did not lead to full complementation of the cgl1-1 phenotype. Combined, the results indicate that activity of HuGnTI in plants is limited by a combination of reduced protein stability, alternative protein targeting and possibly to some extend to lower enzymatic performance of the catalytic domain in the plant biochemical environment

    Transcriptional Feedback in Plant Growth and Defense by PIFs, BZR1, HY5, and MYC Transcription Factors

    No full text
    Growth of Arabidopsis is controlled by the activity of a set of bHLH and bZIP transcription factors of which phytochrome interacting factor4 (PIF4), BRASSINAZOLE-RESISTANT 1 (BZR1), and elongated hypocotyl 5 (HY5) have been most extensively studied. Defense responses are controlled by a set of MYC transcription factors of which MYC2 is best characterized. Moreover, hundreds of additional proteins (here named co-factors) have been identified which (in)directly may affect the expression or activity of these TFs. Thus, regulation of expression of genes encoding these co-factors becomes an integral part of understanding the molecular control of growth and defense. Here, we review RNA-seq data related to PIF, BZR1, HY5, or MYC activity, which indicate that 125 co-factor genes affecting PIFs, HY5, BZR1, or MYCs are themselves under transcriptional control by these TFs, thus revealing potential feedback regulation in growth and defense. The transcriptional feedback on co-factor genes related to PIF4, BZR1, and MYC2 by PIFs, BZR1, or MYCs, mostly results in negative feedback on PIF4, BZR1, or MYC2 activity. In contrast, transcription feedback on co-factor genes for HY5 by HY5 mostly results in positive feedback on HY5 activity. PIF4 and BZR1 exert a balanced regulating of photoreceptor-gene expression, whose products directly or indirectly affect PIF4, HY5, and MYC2 protein stability as a function of light. Growth itself is balanced by both multiple positive and multiple negative feedback on PIF4 and BZR1 activity. The balance between growth and defense is mostly through direct cross-regulation between HY5 and MYC2 as previously described, but also through potential transcriptional feedback on co-factor genes for MYC2 by PIF4, BZR1, and HY5 and through transcriptional feedback of co-factors for PIF4 and BZR1 by MYC2. The interlocking feed-forward and feed-backward transcriptional regulation of PIF4, BZR1, HY5, and MYC2 co-factors is a signature of robust and temporal control of signaling related to growth and defense

    Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production

    No full text
    The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value

    Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand

    No full text
    Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production

    Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production

    No full text
    The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value.</p

    Developmental and Wound-, Cold-, Desiccation-, Ultraviolet-B-Stress-Induced Modulations in the Expression of the Petunia Zinc Finger Transcription Factor Gene ZPT2-2

    No full text
    The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia
    corecore