2,166 research outputs found

    Determining the Electron-Phonon Coupling Strength in Correlated Electron Systems from Resonant Inelastic X-ray Scattering

    Full text link
    We show that high resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis demonstrates that the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross section. An alternative, very direct manner to extract the coupling is to use the one and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole life-time. This allows measurement of the e-p coupling on an absolute energy scale.Comment: 4 pages, 3 figure

    Mediated tunable coupling of flux qubits

    Full text link
    It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUID's susceptibility on external flux makes it possible to continuously tune the induced coupling from antiferromagnetic (AF) to ferromagnetic (FM). In particular, for suitable parameters, the induced FM coupling can be sufficiently large to overcome any possible direct AF inductive coupling between the qubits. The main features follow from a classical analysis of the multi-qubit potential. A fully quantum treatment yields similar results, but with a modified expression for the SQUID susceptibility. Since the latter is exact, it can also be used to evaluate the susceptibility--or, equivalently, energy-level curvature--of an isolated rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable) qubit. The result is compared to the standard two-level (pseudospin) treatment of the anticrossing, and the ensuing conclusions are verified numerically.Comment: REVTeX 4, 16 pp., 4 EPS figures. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: major expansion and rewriting, new title and co-author; to appear in New Journal of Physics special issue (R. Fazio, ed.

    Orbital excitations in LaMnO3_3

    Get PDF
    We study the recently observed orbital excitations, orbitons, and treat electron-electron correlations and lattice dynamics on equal footing. It is shown that the orbiton energy and dispersion are determined by both correlations and lattice-vibrations. The electron-phonon coupling causes satellite structures in the orbiton spectral function and the elementary excitations of the system are mixed modes with both orbital and phonon character. It is proposed that the satellite structures observed in recent Raman-scattering experiments on LaMnO3_3 are actually orbiton derived satellites in the phonon spectral function, caused by the phonon-orbiton interaction.Comment: 4 pages, 3 figures embedde

    Excitonic quasiparticles in a spin-orbit Mott insulator

    Full text link
    In condensed matter systems, out of a large number of interacting degrees of freedom emerge weakly coupled particles, in terms of which most physical properties are described. For example, Landau quasiparticles (QP) determine all electronic properties of a normal metal. The lack of identification of such QPs is major barrier for understanding myriad exotic properties of correlated electrons, such as unconventional superconductivity and non-Fermi liquid behaviours. Here, we report the observation of a composite particle in a Mott insulator Sr2IrO4---and exciton dressed with magnons---that propagates with the canonical characteristics of a QP: a finite QP residue and a lifetime longer than the hopping time scale. The dynamics of this charge-neutral bosonic excitation mirrors the fundamental process of the analogous one-hole propagation in the background of ordered spins, for which a well-defined QP has never been observed. The much narrower linewidth of the exciton reveals the same intrinsic dynamics that is obscured for the hole and is intimately related to the mechanism of high temperature superconductivity.Comment: submitted versio

    Reentrant metallic transition at a temperature above Tc at the breakdown of cooperative Jahn-Teller orbital order in perovskite manganites

    Full text link
    We report an interesting reentrant metallic resistivity pattern beyond a characteristic temperature T* which is higher than other such characteristic transition temperatures like T(c)(Curie point), T(N) (Neel point), T(CO) (charge order onset point) or T(OO) (orbital order onset point) in a range of rare-erath perovskite manganites (RE(1-x)A(x)MnO(3); RE = La, Nd, Y; A = Sr, Ca; x = 0.0-0.5). Such a behavior is normally observed in doped manganites with doping level (x) higher than the critical doping level x(c) (= 0.17-0.22) required for the metallic ground state to emerge and hence in a system where cooperative Jahn-Teller orbital order has already undergone a breakdown. However, the observation made in the La(1-x)Ca(x)MnO(3) (x = 0.0-0.5) series turns out to be an exception to this general trend.Comment: 15 pages including 3 figures; pdf onl

    Establishing the fundamental magnetic interactions in the chiral skyrmionic Mott insulator Cu2OSeO3 by terahertz electron spin resonance

    Get PDF
    The recent discovery of skyrmions in Cu2_2OSeO3_3 has established a new platform to create and manipulate skyrmionic spin textures. We use high-field electron spin resonance (ESR) spectroscopy combining a terahertz free electron laser and pulsed magnetic fields up to 64 T to probe and quantify its microscopic spin-spin interactions. Besides providing direct access to the long-wavelength Goldstone mode, this technique probes also the high-energy part of the excitation spectrum which is inaccessible by standard low-frequency ESR. Fitting the behavior of the observed modes in magnetic field to a theoretical framework establishes experimentally that the fundamental magnetic building blocks of this skyrmionic magnet are rigid, highly entangled and weakly coupled tetrahedra.Comment: 5 pages, 3 Figure

    New light on magnetic excitations: indirect resonant inelastic X-ray scattering on magnons

    Full text link
    Recent experiments show that indirect resonant inelastic X-ray scattering (RIXS) is a new probe of spin dynamics. Here I derive the cross-section for magnetic RIXS and determine the momentum dependent four-spin correlation function that it measures. These results show that this technique offers information on spin dynamics that is complementary to e.g. neutron scattering. The RIXS spectrum of Heisenberg antiferromagnets is calculated. It turns out that only scattering processes that involve at least two magnons are allowed. Other selection rules imply that the scattering intensity vanishes for specific transferred momenta q{\bf q}, in particular for q=0{\bf q}=0. The calculated spectra agree very well with the experimental data.Comment: 4 pages, 3 figure
    • …
    corecore