53 research outputs found
The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities.
Pleomorphic adenoma gene (PLAG) 1, the main translocation target in pleomorphic adenomas of the salivary glands, is a member of a new subfamily of zinc finger proteins comprising the tumor suppressor candidate PLAG-like1 (also called ZAC1 or lost on transformation 1) and PLAGL2. In this report, we show that NIH3T3 cells overexpressing PLAG1 or PLAGL2 display the typical markers of neoplastic transformation: (a) the cells lose cell-cell contact inhibition; (b) show anchorage-independent growth; and (c) are able to induce tumors in nude mice. In contrast, PLAGL1 has been shown to prevent the proliferation of tumor cells by inducing cell cycle arrest and apoptosis. This difference in function is also reflected in their DNA binding, as we show here that the three PLAG proteins, although highly homologous in their DNA-binding domain, bind different DNA sequences in a distinct fashion. Interestingly, the PLAG1- and PLAGL2-induced transformation is accompanied by a drastic up-regulation of insulin-like growth factor-II, which we prove is a target of PLAG1 and PLAGL2. This strongly suggests that the oncogenic capacity of PLAG1 and PLAGL2 is mediated at least partly by activating the insulin-like growth factor-II mitogenic pathway.Peer reviewe
Microarray screening for target genes of the proto-oncogene PLAG1.
PLAG1 is a proto-oncogene whose ectopic expression can trigger the development of pleomorphic adenomas of the salivary glands and of lipoblastomas. As PLAG1 is a transcription factor, able to activate transcription through the binding to the consensus sequence GRGGC(N)(6-8)GGG, its ectopic expression presumably results in the deregulation of target genes, leading to uncontrolled cell proliferation. The identification of PLAG1 target genes is therefore a crucial step in understanding the molecular mechanisms involved in PLAG1-induced tumorigenesis. To this end, we analysed the changes in gene expression caused by the conditional induction of PLAG1 expression in fetal kidney 293 cell lines. Using oligonucleotide microarray analyses of about 12 000 genes, we consistently identified 47 genes induced and 12 genes repressed by PLAG1. One of the largest classes identified as upregulated PLAG1 targets consists of growth factors such as the insulin-like growth factor II and the cytokine-like factor 1. The in silico search for PLAG1 consensus sequences in the promoter of the upregulated genes reveals that a large proportion of them harbor several copies of the PLAG1-binding motif, suggesting that they represent direct PLAG1 targets. Our approach was complemented by the comparison of the expression profiles of pleomorphic adenomas induced by PLAG1 versus normal salivary glands. Concordance between these two sets of experiments pinpointed 12 genes that were significantly and consistently upregulated in pleomorphic adenomas and in PLAG1-expressing cells, identifying them as putative PLAG1 targets in these tumors
Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11
Recurrent chromosomal rearrangements are associated with the development of acute myeloid leukemia (AML). The frequent inversion of chromosome 16 creates the CBFB-MYH11 fusion gene that encodes the fusion protein CBFbeta-SMMHC. This fusion protein inhibits the core-binding factor (CBF), resulting in a block of hematopoietic differentiation, and induces leukemia upon the acquisition of additional mutations. A recent genetic screen identified Plag1 and Plagl2 as CBF beta-SMMHC candidate cooperating proteins. In this study, we demonstrate that Plag1 and Plagl2 independently cooperate with CBF beta-SMMHC in vivo to efficiently trigger leukemia with short latency in the mouse. In addition, Plag1 and Plagl2 increased proliferation by inducing G1 to S transition that resulted in the expansion of hematopoietic progenitors and increased cell renewal in vitro. Finally, PLAG1 and PLAGL2 expression was increased in 20% of human AML samples. Interestingly, PLAGL2 was preferentially increased in samples with chromosome 16 inversion, suggesting that PLAG1 and PLAGL2 may also contribute to human AML. Overall, this study shows that Plag1 and Plagl2 are novel leukemia oncogenes that act by expanding hematopoietic progenitors expressing CbF beta-SMMHC
Increased β-Cell Mass by Islet Transplantation and PLAG1 Overexpression Causes Hyperinsulinemic Normoglycemia and Hepatic Insulin Resistance in Mice
OBJECTIVE-It is believed that an organism remains normoglycemic despite an increase in the beta-cell mass because of decreased insulin production by beta-cells on a per-cell basis However, some transgenic mouse models with beta-cell hyperplasia suggest that insulin production remains excessive and that normoglycemia is maintained by insulin resistance METHODS-Here, we investigated the effect of an increased beta-cell mass on glycemia and insulin resistance by grafting excess normal islets in normoglycemic mice, as well as using targeted PLAG1 expression in beta-cells, which leads to beta-cell expansion. RESULTS-In both models, fasting plasma insulin levels were increased, even though animals were normoglycemic. After an intraperitoneal glucose tolerance test, plasma insulin levels increased, which was associated with improved glucose clearing Under these conditions, normoglycemia is maintained by hepatic insulin resistance as demonstrated by hyperinsulinemic euglycemic clamp experiments. CONCLUSIONS-In conclusion, we demonstrate that when excess beta-cells are grafted, insulin production on a per beta-cell basis is not sufficiently decreased, leading to hyperinsulinemia and hepatic insulin resistance. This observation might be important for the design of stem cell-based islet replacement therapies. Diabetes 59:1957-1965, 2010Diabetes mellitus: pathophysiological changes and therap
Salivary gland tumors in transgenic mice with targeted PLAG1 proto-oncogene overexpression.
peer reviewedPleomorphic adenoma gene 1 (PLAG1) proto-oncogene overexpression is implicated in various human neoplasias, including salivary gland pleomorphic adenomas. To further assess the oncogenic capacity of PLAG1, two independent PLAG1 transgenic mouse strains were established, PTMS1 and PTMS2, in which activation of PLAG1 overexpression is Cre mediated. Crossbreeding of PTMS1 or PTMS2 mice with MMTV-Cre transgenic mice was done to target PLAG1 overexpression to salivary and mammary glands, in the P1-Mcre/P2-Mcre offspring. With a prevalence of 100% and 6%, respectively, P1-Mcre and P2-Mcre mice developed salivary gland tumors displaying various pleomorphic adenoma features. Moreover, histopathologic analysis of salivary glands of 1-week-old P1-Mcre mice pointed at early tumoral stages in epithelial structures. Malignant characteristics in the salivary gland tumors and frequent lung metastases were found in older tumor-bearing mice. PLAG1 overexpression was shown in all tumors, including early tumoral stages. The tumors revealed an up-regulation of the expression of two distinct, imprinted gene clusters (i.e., Igf2/H19 and Dlk1/Gtl2). With a latency period of about 1 year, 8% of the P2-Mcre mice developed mammary gland tumors displaying similar histopathologic features as the salivary gland tumors. In conclusion, our results establish the strong and apparently direct in vivo tumorigenic capacity of PLAG1 and indicate that the transgenic mice constitute a valuable model for pleomorphic salivary gland tumorigenesis and potentially for other glands as well
Kinome capture sequencing of high-grade serous ovarian carcinoma reveals novel mutations in theJAK3gene
High-grade serous ovarian carcinoma (HGSOC) remains the deadliest form of epithelial ovarian cancer and despite major efforts little improvement in overall survival has been achieved. Identification of recurring "driver" genetic lesions has the potential to enable design of novel therapies for cancer. Here, we report on a study to find such new therapeutic targets for HGSOC using exome-capture sequencing approach targeting all kinase genes in 127 patient samples. Consistent with previous reports, the most frequently mutated gene wasTP53(97% mutation frequency) followed byBRCA1(10% mutation frequency). The average mutation frequency of the kinase genes mutated from our panel was 1.5%. Intriguingly, afterBRCA1,JAK3was the most frequently mutated gene (4% mutation frequency). We tested the transforming properties of JAK3 mutants using the Ba/F3 cell-basedin vitrofunctional assay and identified a novel gain-of-function mutation in the kinase domain ofJAK3(p.T1022I). Importantly, p.T1022IJAK3mutants displayed higher sensitivity to the JAK3-selective inhibitor Tofacitinib compared to controls. For independent validation, we re-sequenced the entireJAK3coding sequence using tagged amplicon sequencing (TAm-Seq) in 463 HGSOCs resulting in an overall somatic mutation frequency of 1%. TAm-Seq screening ofCDK12in the same population revealed a 7% mutation frequency. Our data confirms that the frequency of mutations in kinase genes in HGSOC is low and provides accurate estimates for the frequency ofJAK3andCDK12mutations in a large well characterized cohort. Although p.T1022IJAK3mutations are rare, our functional validation shows that if detected they should be considered as potentially actionable for therapy. The observation ofCDK12mutations in 7% of HGSOC cases provides a strong rationale for routine somatic testing, although more functional and clinical characterization is required to understand which nonsynonymous mutations alterations are associated with homologous recombination deficiency.ISSN:1932-620
Kinome capture sequencing of high-grade serous ovarian carcinoma reveals novel mutations in the JAK3 gene.
High-grade serous ovarian carcinoma (HGSOC) remains the deadliest form of epithelial ovarian cancer and despite major efforts little improvement in overall survival has been achieved. Identification of recurring "driver" genetic lesions has the potential to enable design of novel therapies for cancer. Here, we report on a study to find such new therapeutic targets for HGSOC using exome-capture sequencing approach targeting all kinase genes in 127 patient samples. Consistent with previous reports, the most frequently mutated gene was TP53 (97% mutation frequency) followed by BRCA1 (10% mutation frequency). The average mutation frequency of the kinase genes mutated from our panel was 1.5%. Intriguingly, after BRCA1, JAK3 was the most frequently mutated gene (4% mutation frequency). We tested the transforming properties of JAK3 mutants using the Ba/F3 cell-based in vitro functional assay and identified a novel gain-of-function mutation in the kinase domain of JAK3 (p.T1022I). Importantly, p.T1022I JAK3 mutants displayed higher sensitivity to the JAK3-selective inhibitor Tofacitinib compared to controls. For independent validation, we re-sequenced the entire JAK3 coding sequence using tagged amplicon sequencing (TAm-Seq) in 463 HGSOCs resulting in an overall somatic mutation frequency of 1%. TAm-Seq screening of CDK12 in the same population revealed a 7% mutation frequency. Our data confirms that the frequency of mutations in kinase genes in HGSOC is low and provides accurate estimates for the frequency of JAK3 and CDK12 mutations in a large well characterized cohort. Although p.T1022I JAK3 mutations are rare, our functional validation shows that if detected they should be considered as potentially actionable for therapy. The observation of CDK12 mutations in 7% of HGSOC cases provides a strong rationale for routine somatic testing, although more functional and clinical characterization is required to understand which nonsynonymous mutations alterations are associated with homologous recombination deficiency
Upstream Stimulatory Factor (USF) and CCAAT/Enhancer Binding Protein δ (C/EBPδ) Compete for overlapping Sites in the Negative Regulatory Region of the HIV-1 LTR
Human immunodeficiency virus type 1 (HIV-1) is a human retrovirus and the causative agent of the acquired immunodeficiency syndrome. Genetic analysis has revealed that the HIV-1 LTR contains a potential negative regulatory element (NRE) with an E box, the recognition sequence for the helix-loop-helix (HLH) family of transcription factors. Furthermore, the upstream stimulatory factor (USF) has been implicated as a negative regulator of HIV-1 expression. Here, we report that the NRE is a composite element and that both C/EBPδ and USF can specifically bind to the NRE. The recognition sequence for C/EBPδ overlaps with the E box in the NRE of HIV-1. Competition experiments showed that either USF or C/EBPδ binds to this NRE but not both together
- …