611 research outputs found

    Sulphur-bearing molecules in AGB stars I: The occurrence of hydrogen sulfide

    Get PDF
    Through a survey of (sub-)millimetre emission lines of various sulphur-bearing molecules, we aim to determine which molecules are the primary carriers of sulphur in different types of AGB stars. In this paper, the first in a series, we investigate the occurrence of H2_2S in AGB circumstellar envelopes and determine its abundance, where possible. We have surveyed 20 AGB stars with a range of mass-loss rates and of different chemical types using the APEX telescope to search for rotational transition lines of five key sulphur-bearing molecules: CS, SiS, SO, SO2_2 and H2_2S. Here we present our results for H2_2S, including detections, non-detections and detailed radiative transfer modelling of the detected lines. We compare results based on different descriptions of the molecular excitation of H2_2S and different abundance distributions, including those derived from chemical modelling results. We detected H2_2S towards five AGB stars, all of which have high mass-loss rates of M˙5×106M\dot{M}\geq 5\times 10^{-6}M_\odot yr1^{-1} and are oxygen-rich. H2_2S was not detected towards the carbon or S-type stars that fall in a similar mass-loss range. For the stars in our sample with detections, we find peak o-H2_2S abundances relative to H2_2 between 4×1074\times 10^{-7} and 2.5×1052.5\times 10^{-5}. Overall, we conclude that H2_2S can play a significant role in oxygen-rich AGB stars with higher mass-loss rates, but is unlikely to play a key role in stars of other chemical types or the lower mass-loss rate oxygen-rich stars. For two sources, V1300 Aql and GX Mon, H2_2S is most likely the dominant sulphur-bearing molecule in the circumstellar envelope.Comment: 14 pages, 7 figures, accepted in A&

    The SAMI Galaxy Survey: Satellite galaxies undergo little structural change during their quenching phase

    Get PDF
    At fixed stellar mass, satellite galaxies show higher passive fractions than centrals, suggesting that environment is directly quenching their star formation. Here, we investigate whether satellite quenching is accompanied by changes in stellar spin (quantified by the ratio of the rotational to dispersion velocity V/σ\sigma) for a sample of massive (M>M_{*}>1010^{10} M_{\odot}) satellite galaxies extracted from the SAMI Galaxy Survey. These systems are carefully matched to a control sample of main sequence, high V/σV/\sigma central galaxies. As expected, at fixed stellar mass and ellipticity, satellites have lower star formation rate (SFR) and spin than the control centrals. However, most of the difference is in SFR, whereas the spin decreases significantly only for satellites that have already reached the red sequence. We perform a similar analysis for galaxies in the EAGLE hydro-dynamical simulation and recover differences in both SFR and spin similar to those observed in SAMI. However, when EAGLE satellites are matched to their `true' central progenitors, the change in spin is further reduced and galaxies mainly show a decrease in SFR during their satellite phase. The difference in spin observed between satellites and centrals at zz\sim0 is primarily due to the fact that satellites do not grow their angular momentum as fast as centrals after accreting into bigger halos, not to a reduction of V/σV/\sigma due to environmental effects. Our findings highlight the effect of progenitor bias in our understanding of galaxy transformation and they suggest that satellites undergo little structural change before and during their quenching phase.Comment: 11 pages, 7 figures. Accepted for publication in MNRA

    The Tully–Fisher relation from SDSS-MaNGA: physical causes of scatter and variation at different radii

    Get PDF
    The stellar mass Tully–Fisher relation (STFR) and its scatter encode valuable information about the processes shaping galaxy evolution across cosmic time. However, we are still missing a proper quantification of the STFR slope and scatter dependence on the baryonic tracer used to quantify rotational velocity, on the velocity measurement radius and on galaxy integrated properties. We present a catalogue of stellar and ionized gas (traced by H emission) kinematic measurements for a sample of galaxies drawn from the MaNGA Galaxy Survey, providing an ideal tool for galaxy formation model calibration and for comparison with high-redshift studies. We compute the STFRs for stellar and gas rotation at 1, 1.3 and 2 effective radii (Re). The relations for both baryonic components become shallower at 2Re compared to 1Re and 1.3Re. We report a steeper STFR for the stars in the inner parts (≤1.3Re) compared to the gas. At 2Re, the relations for the two components are consistent. When accounting for covariances with integrated v/σ, scatter in the stellar and gas STFRs shows no strong correlation with: optical morphology, star formation rate surface density, tidal interaction strength or gas accretion signatures. Our results suggest that the STFR scatter is driven by an increase in stellar/gas dispersional support, from either external (mergers) or internal (feedback) processes. No correlation between STFR scatter and environment is found. Nearby Universe galaxies have their stars and gas in statistically different states of dynamical equilibrium in the inner parts (≤1.3Re), while at 2Re the two components are dynamically coupled

    The SAMI Galaxy Survey: gas content and interaction as the drivers of kinematic asymmetry

    Get PDF
    In order to determine the causes of kinematic asymmetry in the Hα\alpha gas in the SAMI Galaxy Survey sample, we investigate the comparative influences of environment and intrinsic properties of galaxies on perturbation. We use spatially resolved Hα\alpha velocity fields from the SAMI Galaxy Survey to quantify kinematic asymmetry (vasym\overline{v_{asym}}) in nearby galaxies and environmental and stellar mass data from the GAMA survey. {We find that local environment, measured as distance to nearest neighbour, is inversely correlated with kinematic asymmetry for galaxies with log(M/M)>10.0\mathrm{\log(M_*/M_\odot)}>10.0, but there is no significant correlation for galaxies with log(M/M)<10.0\mathrm{\log(M_*/M_\odot)}<10.0. Moreover, low mass galaxies (log(M/M)<9.0\mathrm{\log(M_*/M_\odot)}<9.0) have greater kinematic asymmetry at all separations, suggesting a different physical source of asymmetry is important in low mass galaxies.} We propose that secular effects derived from gas fraction and gas mass may be the primary causes of asymmetry in low mass galaxies. High gas fraction is linked to high σmV\frac{\sigma_{m}}{V} (where σm\sigma_m is Hα\alpha velocity dispersion and VV the rotation velocity), which is strongly correlated with vasym\overline{v_{asym}}, and galaxies with log(M/M)<9.0\log(M_*/M_\odot)<9.0 have offset σmV\overline{\frac{\sigma_{m}}{V}} from the rest of the sample. Further, asymmetry as a fraction of dispersion decreases for galaxies with log(M/M)<9.0\log(M_*/M_\odot)<9.0. Gas mass and asymmetry are also inversely correlated in our sample. We propose that low gas masses in dwarf galaxies may lead to asymmetric distribution of gas clouds, leading to increased relative turbulence.Comment: 15 pages, 20 figure

    Colour-Dielectric Gauge Theory on a Transverse Lattice

    Get PDF
    We investigate in some detail consequences of the effective colour-dielectric formulation of lattice gauge theory using the light-cone Hamiltonian formalism with a transverse lattice. As a quantitative test of this approach, we have performed extensive analytic and numerical calculations for 2+1-dimensional pure gauge theory in the large N limit. Because of Eguchi-Kawai reduction, one effectively studies a 1+1-dimensional gauge theory coupled to matter in the adjoint representation. We study the structure of coupling constant space for our effective potential by comparing with the physical results available from conventional Euclidean lattice Monte Carlo simulations of this system. In particular, we calculate and measure the scaling behaviour of the entire low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic density of states, and deconfining temperature. We employ a new hybrid DLCQ/wavefunction basis in our calculations of the light-cone Hamiltonian matrix elements, along with extrapolation in Tamm-Dancoff truncation, significantly reducing numerical errors. Finally we discuss, in light of our results, what further measurements and calculations could be made in order to systematically remove lattice spacing dependence from our effective potential a priori.Comment: 48 pages, Latex, uses macro boxedeps.tex, minor errors corrected in revised versio

    The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    Get PDF
    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically-selected samples of galaxies is inferred. We implement an efficient and optimised algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the "spin" parameter proxy Lambda_Re. In particular, low spin systems have a higher occurrence of triaxiality, while high spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multi-merger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.Comment: 15 pages, 11 figures, MNRAS in prin

    Tube Model for Light-Front QCD

    Get PDF
    We propose the tube model as a first step in solving the bound state problem in light-front QCD. In this approach we neglect transverse variations of the fields, producing a model with 1+1 dimensional dynamics. We then solve the two, three, and four particle sectors of the model for the case of pure glue SU(3). We study convergence to the continuum limit and various properties of the spectrum.Comment: 29 page

    Encouraging survival rates in patients with acute myocardial infarction treated with an intra-aortic balloon pump

    Get PDF
    Objective To evaluate a 30-day and long-term outcome of patients with acute myocardial infarction (AMI) treated with intra-aortic balloon pump (IABP) counterpulsation and to identify predictors of a 30-day and long-term all-cause mortality. Methods Retrospective cohort study of 437 consecutive AMI patients treated with IABP between January 1990 and June 2004. A Cox proportional hazards model was used to identify predictors of a 30-day and long-term all-cause mortality. Results Mean age of the study population was 61±11 years, 80% of the patients were male, and 68% had cardiogenic shock. Survival until IABP removal after successful haemodynamic stabilisation was 78% (n=341). Cumulative 30-day survival was 68%. Median follow-up was 2.9 years (range, 6 months to 15 years). In patients who survived until IABP removal, cumulative 1-, 5-, and 10-year survival was 75%

    The SAMI Galaxy Survey: embedded discs and radial trends in outer dynamical support across the Hubble sequence

    Get PDF
    We study the balance in dynamical support of 384 galaxies with stellar kinematics out to ≥1.5R_e in the Sydney AAO Multi-object Integral Field (SAMI) Galaxy Survey. We present radial dynamical profiles of the local rotation dominance parameter, V/σ, and local spin, λ_(loc). Although there is a broad range in amplitude, most kinematic profiles monotonically increase across the probed radial range. We do not find many galaxies with kinematic transitions such as those expected between the inner in situ and outer accreted stars within the radial range probed. We compare the V/σ gradient and maximum values to the visual morphologies of the galaxies to better understand the link between visual and kinematic morphologies. We find that the radial distribution of dynamical support in galaxies is linked to their visual morphology. Late-type systems have higher rotational support at all radii and steeper V/σ gradients compared to early-type galaxies. We perform a search for embedded discs, which are rotationally supported discy structures embedded within large scale slowly or non-rotating structures. Visual inspection of the kinematics reveals at most 3 galaxies (out of 384) harbouring embedded discs. This is more than an order of magnitude fewer than the observed fraction in some local studies. Our tests suggest that this tension can be attributed to differences in the sample selection, spatial sampling, and beam smearing due to seeing
    corecore