11 research outputs found

    A comparative analysis of HIV drug resistance interpretation based on short reverse transcriptase sequences versus full sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As second-line antiretroviral treatment (ART) becomes more accessible in resource-limited settings (RLS), the need for more affordable monitoring tools such as point-of-care viral load assays and simplified genotypic HIV drug resistance (HIVDR) tests increases substantially. The prohibitive expenses of genotypic HIVDR assays could partly be addressed by focusing on a smaller region of the HIV reverse transcriptase gene (RT) that encompasses the majority of HIVDR mutations for people on ART in RLS. In this study, an <it>in silico </it>analysis of 125,329 RT sequences was performed to investigate the effect of submitting short RT sequences (codon 41 to 238) to the commonly used virco<sup>®</sup>TYPE and Stanford genotype interpretation tools.</p> <p>Results</p> <p>Pair-wise comparisons between full-length and short RT sequences were performed. Additionally, a non-inferiority approach with a concordance limit of 95% and two-sided 95% confidence intervals was used to demonstrate concordance between HIVDR calls based on full-length and short RT sequences.</p> <p>The results of this analysis showed that HIVDR interpretations based on full-length versus short RT sequences, using the Stanford algorithms, had concordance significantly above 95%. When using the virco<sup>®</sup>TYPE algorithm, similar concordance was demonstrated (>95%), but some differences were observed for d4T, AZT and TDF, where predictions were affected in more than 5% of the sequences. Most differences in interpretation, however, were due to shifts from fully susceptible to reduced susceptibility (d4T) or from reduced response to minimal response (AZT, TDF) or vice versa, as compared to the predicted full RT sequence. The virco<sup>®</sup>TYPE prediction uses many more mutations outside the RT 41-238 amino acid domain, which significantly contribute to the HIVDR prediction for these 3 antiretroviral agents.</p> <p>Conclusions</p> <p>This study illustrates the acceptability of using a shortened RT sequences (codon 41-238) to obtain reliable genotype interpretations by virco<sup>®</sup>TYPE and Stanford algorithms. Implementation of this simplified protocol could significantly reduce the cost of both resistance testing and ARV treatment monitoring in RLS.</p

    Cross-validated stepwise regression for identification of novel non-nucleoside reverse transcriptase inhibitor resistance associated mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Linear regression models are used to quantitatively predict drug resistance, the phenotype, from the HIV-1 viral genotype. As new antiretroviral drugs become available, new resistance pathways emerge and the number of resistance associated mutations continues to increase. To accurately identify which drug options are left, the main goal of the modeling has been to maximize predictivity and not interpretability. However, we originally selected linear regression as the preferred method for its transparency as opposed to other techniques such as neural networks. Here, we apply a method to lower the complexity of these phenotype prediction models using a 3-fold cross-validated selection of mutations.</p> <p>Results</p> <p>Compared to standard stepwise regression we were able to reduce the number of mutations in the reverse transcriptase (RT) inhibitor models as well as the number of interaction terms accounting for synergistic and antagonistic effects. This reduction in complexity was most significant for the non-nucleoside reverse transcriptase inhibitor (NNRTI) models, while maintaining prediction accuracy and retaining virtually all known resistance associated mutations as first order terms in the models. Furthermore, for etravirine (ETR) a better performance was seen on two years of unseen data. By analyzing the phenotype prediction models we identified a list of forty novel NNRTI mutations, putatively associated with resistance. The resistance association of novel variants at known NNRTI resistance positions: 100, 101, 181, 190, 221 and of mutations at positions not previously linked with NNRTI resistance: 102, 139, 219, 241, 376 and 382 was confirmed by phenotyping site-directed mutants.</p> <p>Conclusions</p> <p>We successfully identified and validated novel NNRTI resistance associated mutations by developing parsimonious resistance prediction models in which repeated cross-validation within the stepwise regression was applied. Our model selection technique is computationally feasible for large data sets and provides an approach to the continued identification of resistance-causing mutations.</p

    Discovering H-bonding rules in crystals with inductive logic programming

    Get PDF
    In the domain of crystal engineering, various schemes have been proposed for the classification of hydrogen bonding (H-bonding) patterns observed in 3D crystal structures. In this study, the aim is to complement these schemes with rules that predict H-bonding in crystals from 2D structural information only. Modern computational power and the advances in inductive logic programming (ILP) can now provide computational chemistry with the opportunity for extracting structure-specific rules from large databases that can be incorporated into expert systems. ILP technology is here applied to H-bonding in crystals to develop a self-extracting expert system utilizing data in the Cambridge Structural Database of small molecule crystal structures. A clear increase in performance was observed when the ILP system DMax was allowed to refer to the local structural environment of the possible H-bond donor/acceptor pairs. This ability distinguishes ILP from more traditional approaches that build rules on the basis of global molecular properties.status: publishe

    Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling

    No full text
    Abstract Background Integrase inhibitors (INI) form a new drug class in the treatment of HIV-1 patients. We developed a linear regression modeling approach to make a quantitative raltegravir (RAL) resistance phenotype prediction, as Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype. Methods We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI naïve and RAL treated patients, and 28 site-directed mutants. We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA) to select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models (GA models) that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending prevalence in the GA models. Results The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%), 143G (90%), 148H/R (89%), 148K (88%), 151I (81%), 121Y (75%), 143C (72%), and 74M (69%). The RAL second order model contained 30 single mutations and five mutation pairs (p 2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients. Conclusions We describe a systematic approach to derive a model for predicting INI resistance from a limited amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a resistance phenotype as the sum of integrase mutations and mutation pairs.</p

    TMC278, a Next-Generation Nonnucleoside Reverse Transcriptase Inhibitor (NNRTI), Active against Wild-Type and NNRTI-Resistant HIV-1▿ †

    No full text
    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have proven efficacy against human immunodeficiency virus type 1 (HIV-1). However, in the setting of incomplete viral suppression, efavirenz and nevirapine select for resistant viruses. The diarylpyrimidine etravirine has demonstrated durable efficacy for patients infected with NNRTI-resistant HIV-1. A screening strategy used to test NNRTI candidates from the same series as etravirine identified TMC278 (rilpivirine). TMC278 is an NNRTI showing subnanomolar 50% effective concentrations (EC50 values) against wild-type HIV-1 group M isolates (0.07 to 1.01 nM) and nanomolar EC50 values against group O isolates (2.88 to 8.45 nM). Sensitivity to TMC278 was not affected by the presence of most single NNRTI resistance-associated mutations (RAMs), including those at positions 100, 103, 106, 138, 179, 188, 190, 221, 230, and 236. The HIV-1 site-directed mutant with Y181C was sensitive to TMC278, whereas that with K101P or Y181I/V was resistant. In vitro, considerable cross-resistance between TMC278 and etravirine was observed. Sensitivity to TMC278 was observed for 62% of efavirenz- and/or nevirapine-resistant HIV-1 recombinant clinical isolates. TMC278 inhibited viral replication at concentrations at which first-generation NNRTIs could not suppress replication. The rates of selection of TMC278-resistant strains were comparable among HIV-1 group M subtypes. NNRTI RAMs emerging in HIV-1 under selective pressure from TMC278 included combinations of V90I, L100I, K101E, V106A/I, V108I, E138G/K/Q/R, V179F/I, Y181C/I, V189I, G190E, H221Y, F227C, and M230I/L. E138R was identified as a new NNRTI RAM. These in vitro analyses demonstrate that TMC278 is a potent next-generation NNRTI, with a high genetic barrier to resistance development
    corecore