8 research outputs found

    Design and evaluation of tile selection algorithms for tiled HTTP adaptive streaming (Best paper award)

    Get PDF
    The future of digital video is envisioned to have an increase in both resolution and interactivity. New resolutions like 8k UHDTV are up to 16 times as big in number of pixels compared to current HD video. Interactivity includes the possibility to zoom and pan around in video. We examine Tiled HTTP Adaptive Streaming (TAS) as a technique for supporting these trends and allowing them to be implemented on conventional Internet infrastructure. In this article, we propose three tile selection algorithms, for different use cases (e.g., zooming, panning). A performance evaluation of these algorithms on a TAS testbed, shows that they lead to better bandwidth utilization, higher static Region of Interest (ROI) video quality and higher video quality while manipulating the ROI. We show that we can transmit video at resolutions up to four times larger than existing algorithms during bandwidth drops, which results in a higher quality viewing experience. We can also increase the video quality by up to 40 percent in interactive video, during panning or zooming

    Resilience to cognitive impairment in the oldest-old : design of the EMIF-AD 90+ study

    No full text
    BACKGROUND: The oldest-old (subjects aged 90 years and older) population represents the fastest growing segment of society and shows a high dementia prevalence rate of up to 40%. Only a few studies have investigated protective factors for cognitive impairment in the oldest-old. The EMIF-AD 90+ Study aims to identify factors associated with resilience to cognitive impairment in the oldest-old. In this paper we reviewed previous studies on cognitive resilience in the oldest-old and described the design of the EMIF-AD 90+ Study. METHODS: The EMIF-AD 90+ Study aimed to enroll 80 cognitively normal subjects and 40 subjects with cognitive impairment aged 90 years or older. Cognitive impairment was operationalized as amnestic mild cognitive impairment (aMCI), or possible or probable Alzheimer's Disease (AD). The study was part of the European Medical Information Framework for AD (EMIF-AD) and was conducted at the Amsterdam University Medical Centers (UMC) and at the University of Manchester. We will test whether cognitive resilience is associated with cognitive reserve, vascular comorbidities, mood, sleep, sensory system capacity, physical performance and capacity, genetic risk factors, hallmarks of ageing, and markers of neurodegeneration. Markers of neurodegeneration included an amyloid positron emission tomography, amyloid β and tau in cerebrospinal fluid/blood and neurophysiological measures. DISCUSSION: The EMIF-AD 90+ Study will extend our knowledge on resilience to cognitive impairment in the oldest-old by extensive phenotyping of the subjects and the measurement of a wide range of potential protective factors, hallmarks of aging and markers of neurodegeneration. TRIAL REGISTRATION: Nederlands Trial Register NTR5867 . Registered 20 May 2016

    Bending the curve of terrestrial biodiversity needs an integrated strategy

    Get PDF
    Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy

    Bending the curve of terrestrial biodiversity needs an integrated strategy

    No full text
    Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether—and how—humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042–2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34–50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats—such as climate change—must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy

    Resilience to cognitive impairment in the oldest-old: design of the EMIF-AD 90+ study

    No full text
    corecore