5 research outputs found

    Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Veglia, A., Beavers, K., Van Buren, E., Meiling, S., Muller, E., Smith, T., Holstein, D., Apprill, A., Brandt, M., Mydlarz, L., & Correa, A. Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands. Microbiology Resource Announcements, 11(2), (2022): e01199–e01121, https://doi.org/10.1128/mra.01199-21.Stony coral tissue loss disease (SCTLD) is decimating Caribbean corals. Here, through the metatranscriptomic assembly and annotation of two alphaflexivirus-like strains, we provide genomic evidence of filamentous viruses in SCTLD-affected, -exposed, and -unexposed coral colonies. These data will assist in clarifying the roles of viruses in SCTLD.This work was supported by the National Science Foundation (Biological Oceanography) award numbers 1928753 to M.E.B. and T.B.S., 1928609 to A.M.S.C., 1928817 to E.M.M., 19228771 to L.D.M., 1927277 to D.M.H., and 1928761 to A.A., as well as by VI EPSCoR (NSF numbers 0814417 and 1946412)

    Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice

    Get PDF
    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable to control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL-6 levels, expression of pro-inflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice, and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus non-obese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression

    Formation and Fate of Carbonyls in Potable Water Reuse Systems

    No full text
    Low molecular weight, uncharged compounds have been the subject of considerable study at advanced treatment plants employed for potable water reuse. However, previously identified compounds only account for a small fraction of the total dissolved organic carbon remaining after reverse osmosis treatment. Uncharged carbonyl compounds (e.g., aldehydes and ketones) formed during oxidation have rarely been monitored in potable water reuse systems. To determine the relative importance of these compounds to final product water quality, samples were collected from six potable water reuse facilities and one conventional drinking water treatment plant. Saturated carbonyl compounds (e.g., formaldehyde, acetone) and α,β-unsaturated aldehydes (e.g., acrolein, crotonaldehyde) were quantified with a sensitive new analytical method. Relatively high concentrations of carbonyls (i.e., above 7 μM) were observed after ozonation of wastewater effluent. Biological filtration reduced concentrations of carbonyls by over 90%. Rejection of the carbonyls during reverse osmosis was correlated with molecular weight, with concentrations decreasing by 33% to 58%. Transformation of carbonyls resulted in decreases in concentration of 10% to 90% during advanced oxidation, with observed decreases consistent with rate constants for reactions of the compounds with hydroxyl radicals. Overall, carbonyl compounds accounted for 19% to 38% of the dissolved organic carbon in reverse osmosis-treated water
    corecore