14 research outputs found

    Chondrogenic priming at reduced cell density enhances cartilage adhesion of equine allogeneic MSCs : a loading sensitive phenomenon in an organ culture study with 180 explants

    Get PDF
    Background: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain unanswered concerning mesenchymal stem cell (MSC) adhesion and incorporation into cartilage. Methods: To this end, peripheral blood (PB) MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs) for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x10(6) vs 1.0 x10(6)). In total, 180 explants of six horses (30 per horse) were divided into five groups: no lesion (i), lesion alone (ii), lesion with naive MSCs (iii), lesion with chondrogenically-induced MSCs (iv) and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v). Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14). Results: COMP expression was selectively increased by chondrogenic induction (p = 0.0488). PEMF stimulation (1mT for 10 minutes) further augmented COL II expression over induced values (p = 0.0405). On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9%) and lesion filling (3.7%) in all the different conditions (p < 0.0001). Remarkably, homogenous cell distribution was characteristic for chondrogenic induced MSCs (+/- PEMFs), whereas clump formation occurred in 39% of uninduced MSC treated cartilage explants. Finally, unloaded explants seeded with a moderately low density of MSCs exhibited greater lesion filling (p = 0.0022) and surface adherence (p = 0.0161) than explants seeded with higher densities of MSCs. In all cases, the overall amount of lesion filling decreased from day 5 to 14 (p = 0.0156). Conclusion: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage. Copyright (C) 2015 S. Karger AG, Base

    Root hair development in Arabidopsis thaliana: a confocal microscopy study

    No full text
    Root hair formation in Arabidopsis provides a model to study the pattern formation and cell fate specification in plants. The epidermal cell layer of the Arabidopsis root comprises hair-bearing (trichoblast) and hairless (atrichoblast) cells in files along the main axis. Epidermal cell fate is correlated with cell position, with root hair cells located over radial walls between cortical cells, and with hairless cells located directly over cortical cells. The regulation of such a position related differentiation is unknown. The fate of the epidermal cells is partly dependent on the cell lineage; however, intercellular interactions, e.g. between cortical cells, potentially also play a role in root hair morphogenesis

    Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy

    No full text
    Confocal laser scanning microscopy (CLSM) was used to non-destructively analyse the changes in the structure and thickness of the cuticle during storage of apples (Malus domestica Borkh.). Interpretation of the confocal images was performed by comparison with scanning electron microscopy and environmental scanning electron microscopy images. The natural reflectance of the wax and the auto-fluorescence of the underlying cells made it possible with CLSM to distinguish the wax from the underlying layers without any pretreatment of the fruit. The thickness of the consecutive layers (wax, cutin, cells) could be estimated from measurements of the reflection and fluorescence intensities as a function of the number of pixels. The mean wax-layer thickness measured in this way amounted to 2.58 mum, 3.41 mum or 4.14 mum for the cultivars Jonagold, Jonagored and Elstar, respectively. Changes in the wax structure and cells of the same important Belgian apple cultivars as mentioned above were monitored during nine months of storage in ultra low oxygen and after exposure to ambient conditions. The changes in the wax ultrastructure and cell morphology are likely related to water losses and specific protection of the apple cultivars against water losses during storage and shelf life

    Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology

    No full text
    Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGF\u3b23 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGF\u3b23 and bFGF2 + TGF\u3b23 + LLLT. Indeed, the supplement of bFGF2 and TGF\u3b23 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGF\u3b23, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate
    corecore