11 research outputs found

    BASALISC: Programmable Hardware Accelerator for BGV Fully Homomorphic Encryption

    Get PDF
    Fully Homomorphic Encryption (FHE) allows for secure computation on encrypted data. Unfortunately, huge memory size, computational cost and bandwidth requirements limit its practicality. We present BASALISC, an architecture family of hardware accelerators that aims to substantially accelerate FHE computations in the cloud. BASALISC is the first to implement the BGV scheme with fully-packed bootstrapping – the noise removal capability necessary for arbitrary-depth computation. It supports a customized version of bootstrapping that can be instantiated with hardware multipliers optimized for area and power. BASALISC is a three-abstraction-layer RISC architecture, designed for a 1 GHz ASIC implementation and underway toward 150mm2 die tape-out in a 12nm GF process. BASALISC\u27s four-layer memory hierarchy includes a two-dimensional conflict-free inner memory layer that enables 32 Tb/s radix-256 NTT computations without pipeline stalls. Its conflict-resolution permutation hardware is generalized and re-used to compute BGV automorphisms without throughput penalty. BASALISC also has a custom multiply-accumulate unit to accelerate BGV key switching. The BASALISC toolchain comprises a custom compiler and a joint performance and correctness simulator. To evaluate BASALISC, we study its physical realizability, emulate and formally verify its core functional units, and we study its performance on a set of benchmarks. Simulation results show a speedup of more than 5,000× over HElib – a popular software FHE library

    Handboek HRM

    No full text

    Handboek HRM

    No full text

    Handboek HRM

    No full text
    Vanuit arbeids- en organisatiepsychologie, arbeidsso- ciologie, 'organizational behavior' en 'evidence based management' zijn diverse wetenschappelijk onderbouwde inzichten gegroeid, die zowel menselijk arbeidsgedrag als de effecten van HRM voor de organisatieprestaties inzich- telijk maken. Deze volledig geactualiseerde versie van het Handboek HRM, Competentiemanagement en Arbeidsrecht is meer dan een verzameling 'best practices'. Het geeft een multidisciplinair inzicht in de actuele bevindingen van de personeelswetenschappen. De impact van diverse HRM-praktijken op het arbeidsgedrag en op de organisa- tieperformantie wordt toegelicht. Kortom: 'evidence based HRM'. De rode draad is het sturen op competenties en talenten, die het arbeidsgedrag beïnvloeden binnen de sociale architectuur van een organisatie. Het geeft zowel academisch onderbouwde inzichten voor studenten in het hoger onderwijs, als voor de HRM-verantwoordelijken en eerstelijnsmanagers in de dagelijkse praktijk

    BASALISC: Programmable Hardware Accelerator for BGV Fully Homomorphic Encryption

    No full text
    Fully Homomorphic Encryption (FHE) allows for secure computation on encrypted data. Unfortunately, huge memory size, computational cost and bandwidth requirements limit its practicality. We present BASALISC, an architecture family of hardware accelerators that aims to substantially accelerate FHE computations in the cloud. BASALISC is the first to implement the BGV scheme with fully-packed bootstrapping – the noise removal capability necessary for arbitrary-depth computation. It supports a customized version of bootstrapping that can be instantiated with hardware multipliers optimized for area and power.BASALISC is a three-abstraction-layer RISC architecture, designed for a 1 GHz ASIC implementation and underway toward 150mm2 die tape-out in a 12nm GF process. BASALISC’s four-layer memory hierarchy includes a two-dimensional conflict-free inner memory layer that enables 32 Tb/s radix-256 NTT computations without pipeline stalls. Its conflict-resolution permutation hardware is generalized and re-used to compute BGV automorphisms without throughput penalty. BASALISC also has a custom multiply-accumulate unit to accelerate BGV key switching.The BASALISC toolchain comprises a custom compiler and a joint performance and correctness simulator. To evaluate BASALISC, we study its physical realizability, emulate and formally verify its core functional units, and we study its performance on a set of benchmarks. Simulation results show a speedup of more than 5,000× over HElib – a popular software FHE library

    BASALISC: Flexible Asynchronous Hardware Accelerator for Fully Homomorphic Encryption

    Full text link
    Fully Homomorphic Encryption (FHE) allows for secure computation on encrypted data. We present BASALISC, an architecture family of FHE hardware accelerators that aims to substantially accelerate FHE computations in the cloud. BASALISC implements the BGV scheme, targets a range of parameter sets, and directly supports and implements BGV bootstrapping. We propose a new generalized version of bootstrapping that can be implemented with optimized Montgomery multipliers that cost 46% less in silicon area and 40% less in power consumption. BASALISC is a RISC architecture with a four-layer memory hierarchy, including a two-dimensional conflict-free inner memory layer that enables 32 Tb/s radix-256 NTT computations without pipeline stalls. Our conflict-resolution data permutation hardware is re-used to compute BGV automorphisms without additional hardware and without throughput penalty. BASALISC additionally includes a custom multiply-accumulate unit familiar in DSP architectures, with which we accelerate tight BGV key switching loops. The BASALISC computation units and inner memory layers are designed in asynchronous logic, allowing them to run at different speeds to optimize each function. BASALISC is designed for ASIC implementation with a 1 GHz operational frequency, and is already underway toward tape-out with a 150mm2 die size in a 12nm Global Foundries process.The BASALISC toolchain comprises both a custom compiler and a joint performance and correctness simulator. We evaluate BASALISC in multiple ways: we study its physical realizability; we emulate and formally verify its core functional units; and we study its performance on a single iteration of logistic regression training over encrypted data. For this application, comprising from up to 900K high-level BASALISC instructions down to 27B low-level instructions, we show a speedup of at least 2,025x over HElib
    corecore