273 research outputs found

    Dynamic Regimes in Films with a Periodic Array of Antidots

    Full text link
    We have studied the dynamic response of Pb thin films with a square array of antidots by means of ac susceptibility chi(T,H) measurements. At low enough ac drive amplitudes h, vortices moving inside the pinning potential give rise to a frequency- and h-independent response together with a scarce dissipation. For higher amplitudes, the average distance travelled by vortices surpasses the pinning range and a critical state develops. We found that the boundary h*(H,T) between these regimes smoothly decreases as T increases whereas a step-like behavior is observed as a function of field. We demonstrate that these steps in h*(H) arise from sharp changes in the pinning strength corresponding to different vortex configurations. For a wide set of data at several fields and temperatures in the critical state regime, we show that the scaling laws based on the simple Bean model are satisfied.Comment: 7 pages, 5 figure

    Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors

    Full text link
    Enhancement of flux pinning by magnetic nanoparticles embedded into the bulk of type-2 superconductor is studied both theoretically and experimentally. Magnetic part of the pinning force associated with the interaction between a spherical magnetic inclusion and an Abrikosov vortex was calculated in the London approximation. Calculations are supported by the experimental results obtained on sonochemically modified MgB2 superconductor with embedded magnetic Fe2O3 nanoparticles and compared to MgB2 with nonmagnetic Mo2O5 pinning centers of similar concentration and particle size distribution. It is shown that ferromagnetic nanoparticles result in a considerable enhancement of vortex pinning in large-kappa type-2 superconductors.Comment: PDF, 14 page

    Flux pinning properties of superconductors with an array of blind holes

    Full text link
    We performed ac-susceptibility measurements to explore the vortex dynamics and the flux pinning properties of superconducting Pb films with an array of micro-holes (antidots) and non-fully perforated holes (blind holes). A lower ac-shielding together with a smaller extension of the linear regime for the lattice of blind holes indicates that these centers provide a weaker pinning potential than antidots. Moreover, we found that the maximum number of flux quanta trapped by a pinning site, i.e. the saturation number ns, is lower for the blind hole array.Comment: 6 figures, 6 page

    Identifying single electron charge sensor events using wavelet edge detection

    Get PDF
    The operation of solid-state qubits often relies on single-shot readout using a nanoelectronic charge sensor, and the detection of events in a noisy sensor signal is crucial for high fidelity readout of such qubits. The most common detection scheme, comparing the signal to a threshold value, is accurate at low noise levels but is not robust to low-frequency noise and signal drift. We describe an alternative method for identifying charge sensor events using wavelet edge detection. The technique is convenient to use and we show that, with realistic signals and a single tunable parameter, wavelet detection can outperform thresholding and is significantly more tolerant to 1/f and low-frequency noise.Comment: 11 pages, 4 figure

    Phase diagram of a superconductor / ferromagnet bilayer

    Full text link
    The magnetic field (H) - temperature (T) phase diagram of a superconductor is significantly altered when domains are present in an underlying ferromagnet with perpendicular magnetic anisotropy. When the domains have a band-like shape, the critical temperature Tc of the superconductor in zero field is strongly reduced, and the slope of the upper critical field as a function of T is increased by a factor of 2.4 due to the inhomogeneous stray fields of the domains. Field compensation effects can cause an asymmetric phase boundary with respect to H when the ferromagnet contains bubble domains. For a very inhomogeneous domain structure, Tc~H^2 for low H and Tc~H for higher fields, indicating a dimensional crossover from a one-dimensional network-like to a two-dimensional behavior in the nucleation of superconductivity.Comment: 6 pages, 7 figure

    Forming limit predictions for single-point incremental sheet metal forming

    Full text link
    peer reviewedA characteristic of incremental sheet metal forming is that much higher deformations can be achieved than conventional forming limits. In this paper it is investigated to which extent the highly non-monotonic strain paths during such a process may be responsible for this high formability. A Marciniak-Kuczynski (MK) model is used to predict the onset of necking of a sheet subjected to the strain paths obtained by finite-element simulations. The predicted forming limits are considerably higher than for monotonic loading, but still lower than the experimental ones. This discrepancy is attributed to the strain gradient over the sheet thickness, which is not taken into account in the currently used MK model

    Effect of FEM choices in the modelling of incremental forming of aluminium sheets

    Full text link
    peer reviewedThis paper investigates the process of single point incremental forming of an aluminium cone with a 50-degree wall angle. Finite element (FE) models are established to simulate the process. Different FE packages have been used. Various aspects associated with the numerical choices as well as the material and process parameters have been studied. The final geometry and the reaction forces are presented as the results of the simulations. Comparison between the simulation results and the experimental data is also made

    Tunable spin-selective loading of a silicon spin qubit

    Full text link
    The remarkable properties of silicon have made it the central material for the fabrication of current microelectronic devices. Silicon's fundamental properties also make it an attractive option for the development of devices for spintronics and quantum information processing. The ability to manipulate and measure spins of single electrons is crucial for these applications. Here we report the manipulation and measurement of a single spin in a quantum dot fabricated in a silicon/silicon-germanium heterostructure. We demonstrate that the rate of loading of electrons into the device can be tuned over an order of magnitude using a gate voltage, that the spin state of the loaded electron depends systematically on the loading voltage level, and that this tunability arises because electron spins can be loaded through excited orbital states of the quantum dot. The longitudinal spin relaxation time T1 is measured using single-shot pulsed techniques and found to be ~3 seconds at a field of 1.85 Tesla. The demonstration of single spin measurement as well as a long spin relaxation time and tunability of the loading are all favorable properties for spintronics and quantum information processing applications.Comment: 4 pages, 3 figures, Supplemental Informatio

    Superconducting Vortices and Elliptical Ferromagnetic Textures

    Full text link
    In this article an analytical and numerical study of superconducting thin film with ferromagnetic textures of elliptical geometries in close proximity is presented. The screening currents induced in the superconductor due to the magnetic texture are calculated. Close to the superconducting transition temperature TcT_c the spontaneous creation of superconducting vortices becomes energy favorable depending on the value of the magnetization and the geometrical quantities of the magnetic texture. The creation of vortices by elliptic dots is more energy favorable than those created by circular ones. The superconductor covered by elliptic dots array exhibits anisotropic transport properties.Comment: 4 pages, 5figure
    • …
    corecore