390 research outputs found

    Magnetic-domain-controlled vortex pinning in a superconductor/ferromagnet bilayer

    Full text link
    Vortex pinning in a type-II superconducting Pb film covering a Co/Pt multilayer with perpendicular magnetic anisotropy is investigated. Different stable magnetic domain patterns like band and bubble domains can be created in the Co/Pt multilayer, clearly influencing the vortex pinning in the superconducting Pb layer. Most effective pinning is observed for the bubble domain state. We demonstrate that the pinning properties of the superconductor/ferromagnet bilayer can be controlled by tuning the size, density and magnetization direction of the bubbles.Comment: 4 pages, 3 figures, accepted for AP

    Dynamic Regimes in Films with a Periodic Array of Antidots

    Full text link
    We have studied the dynamic response of Pb thin films with a square array of antidots by means of ac susceptibility chi(T,H) measurements. At low enough ac drive amplitudes h, vortices moving inside the pinning potential give rise to a frequency- and h-independent response together with a scarce dissipation. For higher amplitudes, the average distance travelled by vortices surpasses the pinning range and a critical state develops. We found that the boundary h*(H,T) between these regimes smoothly decreases as T increases whereas a step-like behavior is observed as a function of field. We demonstrate that these steps in h*(H) arise from sharp changes in the pinning strength corresponding to different vortex configurations. For a wide set of data at several fields and temperatures in the critical state regime, we show that the scaling laws based on the simple Bean model are satisfied.Comment: 7 pages, 5 figure

    Confinement and Quantization Effects in Mesoscopic Superconducting Structures

    Full text link
    We have studied quantization and confinement effects in nanostructured superconductors. Three different types of nanostructured samples were investigated: individual structures (line, loop, dot), 1-dimensional (1D) clusters of loops and 2D clusters of antidots, and finally large lattices of antidots. Hereby, a crossover from individual elementary "plaquettes", via clusters, to huge arrays of these elements, is realized. The main idea of our study was to vary the boundary conditions for confinement of the superconducting condensate by taking samples of different topology and, through that, modifying the lowest Landau level E_LLL(H). Since the critical temperature versus applied magnetic field T_c(H) is, in fact, E_LLL(H) measured in temperature units, it is varied as well when the sample topology is changed through nanostructuring. We demonstrate that in all studied nanostructured superconductors the shape of the T_c(H) phase boundary is determined by the confinement topology in a unique way.Comment: 28 pages, 19 EPS figures, uses LaTeX's aipproc.sty, contribution to Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in Siena, Italy (8-20 september 1997

    A new cluster-type statistical model for the prediction of deformation textures

    Get PDF
    An attempt was done to improve the quality of deformation texture predictions by statistical models through the introduction of "clusters" of N grains thus defining a third, intermediate length scale. The interaction between each cluster and the macroscopic length scale is of the Taylor type, whereas inside each cluster a VPSC scheme is used. Predictions of cold rolling deformation textures were quantitatively compared with experimental results for a steel alloy. The results are encouraging

    Creation and pinning of vortex-antivortex pairs

    Get PDF
    Computer modeling is reported about the creation and pinning of a magnetic vortex-antivortex (V-AV) pair in a superconducting thin film, due to the magnetic field of a vertical magnetic dipole above the film, and two antidot pins inside the film. For film thickness =0.1ξ= 0.1\xi, κ=2\kappa = 2, and no pins, we find the film carries two V-AV pairs at steady state in the imposed flux range 2.10Φ0<Φ+<3.0Φ02.10\Phi_0 < \Phi^+ < 3.0\Phi_0, and no pairs below. With two antidot pins suitably introduced into the film, a single V-AV pair can be stable in the film for Φ+≥1.3Φ0\Phi^+ \ge 1.3\Phi_0. At pin separation ≥17ξ\ge 17\xi, we find the V-AV pair remains pinned after the dipole field is removed, and, so can represent a 1 for a nonvolatile memory.Comment: 8 pages, 6 figure
    • …
    corecore