13 research outputs found

    Genome-wide association of milk fatty acids in Dutch dairy cattle

    Get PDF
    Background Identifying genomic regions, and preferably individual genes, responsible for genetic variation in milk fat composition of bovine milk will enhance the understanding of biological pathways involved in fatty acid synthesis and may point to opportunities for changing milk fat composition via selective breeding. An association study of 50,000 single nucleotide polymorphisms (SNPs) was performed for even-chain saturated fatty acids (C4:0-C18:0), even-chain monounsaturated fatty acids (C10:1-C18:1), and the polyunsaturated C18:2cis9,trans11 (CLA) to identify genomic regions associated with individual fatty acids in bovine milk. Results The two-step single SNP association analysis found a total of 54 regions on 29 chromosomes that were significantly associated with one or more fatty acids. Bos taurus autosomes (BTA) 14, 19, and 26 showed highly significant associations with seven to ten traits, explaining a relatively large percentage of the total additive genetic variation. Many additional regions were significantly associated with the fatty acids. Some of the regions harbor genes that are known to be involved in fat synthesis or were previously identified as underlying quantitative trait loci for fat yield or content, such as ABCG2 and PPARGC1A on BTA 6; ACSS2 on BTA 13; DGAT1 on BTA 14; ACLY, SREBF1, STAT5A, GH, and FASN on BTA 19; SCD1 on BTA26; and AGPAT6 on BTA 27. Conclusions Medium chain and unsaturated fatty acids are strongly influenced by polymorphisms in DGAT1 and SCD1. Other regions also showed significant associations with the fatty acids studied. These additional regions explain a relatively small percentage of the total additive genetic variance, but they are relevant to the total genetic merit of an individual and in unraveling the genetic background of milk fat composition. Regions identified in this study can be fine mapped to find causal mutations. The results also create opportunities for changing milk fat composition through breeding by selecting individuals based on their genetic merit for milk fat composition

    Efficiency of population structures for mapping of Mendelian and imprinted quantitative trait loci in outbred pigs using variance component methods

    Get PDF
    In a simulation study different designs for a pure line pig population were compared for efficiency of mapping QTL using the variance component method. Phenotypes affected by a Mendelian QTL, a paternally expressed QTL, a maternally expressed QTL or by a QTL without an effect were simulated. In all alternative designs 960 progeny were phenotyped. Given the limited number of animals there is an optimum between the number of families and the family size. Estimation of Mendelian and parentally expressed QTL is more efficient in a design with large family sizes. Too small a number of sires should be avoided to minimize chances of sires to be non-segregating. When a large number of families is used, the number of haplotypes increases which reduces the accuracy of estimating the QTL effect and thereby reduces the power to show a significant QTL and to correctly position the QTL. Dense maps allow for smaller family size due to exploitation of LD-information. Given the different possible modes of inheritance of the QTL using 8 to16 boars, two litters per dam was optimal with respect to determining significance and correct location of the QTL for a data set consisting of 960 progeny. The variance component method combining linkage disequilibrium and linkage analysis seems to be an appropriate choice to analyze data sets which vary in marker density and which contain complex family structures

    Conservation priorities for Ethiopian sheep breeds combining threat status, breed merits and contributions to genetic diversity

    Get PDF
    Prioritizing livestock breeds for conservation needs to incorporate both genetic and non-genetic aspects important for the survival of the breeds. Here, we apply a maximum-utility-strategy to prioritize 14 traditional Ethiopian sheep breeds based on their threat status, contributions to farmer livelihoods (current breed merits) and contributions to genetic diversity. Contributions of the breeds to genetic diversity were quantified using Eding's marker-estimated kinship approaches. Non-genetic aspects included threats (e.g. low population size, low preferences by farmers) and current merits (economic, ecological and cultural merits). Threat analysis identified eight of the 14 breeds as threatened. Analysis of current merits showed that sub-alpine and arid-lowland breeds contribute most to farmer livelihoods in comparison to other breeds. The highest contribution to the genetic diversity conserved was from the Simien breed. Simien showed high between-breed (low between-breed kinship = 0.04) as well as high within-breed diversity (low within-breed kinship = 0.09 and high HE = 0.73 and allelic richness = 6.83). We combined the results on threat status, current breed merits and contributions to genetic diversity to produce a ranking of the 14 breeds for conservation purposes. Our results balance the trade-offs between conserving breeds as insurance against future uncertainties and current sustainable utilization. The ranking of breeds provides a basis for conservation strategies for Ethiopian sheep and contributes to a regional or global conservation plan

    Novel insight into the genomic architecture of feed and nitrogen efficiency measured by residual energy intake and nitrogen excretion in growing pigs

    Get PDF
    Background Improvement of feed efficiency in pigs is of great economical and environmental interest and contributes to use limited resources efficiently to feed the world population. Genome scans for feed efficiency traits are of importance to reveal the underlying biological causes and increase the rate of genetic gain. The aim of this study was to determine the genomic architecture of feed efficiency measured by residual energy intake (REI), in association with production, feed conversion ratio (FCR) and nitrogen excretion traits through the identification of quantitative trait loci (QTL) at different stages of growth using a three generation full-sib design population which originated from a cross between Pietrain and a commercial dam line. Results Six novel QTL for REI were detected explaining 2.7-6.1% of the phenotypic variance in REI. At growth from 60–90 kg body weight (BW), a QTL with a significant dominance effect was identified for REI on SSC14, at a similar location to the QTL for feed intake and nitrogen excretion traits. At growth from 90–120 kg BW, three QTL for REI were detected on SSC2, SSC4 and SSC7 with significant additive, imprinting and additive effects, respectively. These QTL (except for the imprinted QTL) were positionally overlapping with QTL for FCR and nitrogen excretion traits. During final growth (120–140 kg BW), a further QTL for REI was identified on SSC8 with significant additive effect, which overlapped with QTL for nitrogen excretion. During entire analysed growth (60–140 kg BW), a novel additive QTL for REI on SSC4 was observed, with no overlapping with QTL for any other traits considered. Conclusions The occurrence of only one overlapping QTL of REI with feed intake suggests that only a small proportion of the variance in REI was explained by change in feed intake, whereas four overlapping QTL of REI with those of nitrogen excretion traits suggests that mostly underlying factors of feed utilisation such as metabolism and protein turnover were the reason for change in REI. Different QTL for REI were identified at different growth stages, indicating that different genes are responsible for efficiency in feed utilisation at different stages of growth

    Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance

    Get PDF
    The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV
    corecore