5 research outputs found

    Conditional average treatment effect estimation with marginally constrained models

    Get PDF
    Treatment effect estimates are often available from randomized controlled trials as a single average treatment effect for a certain patient population. Estimates of the conditional average treatment effect (CATE) are more useful for individualized treatment decision-making, but randomized trials are often too small to estimate the CATE. Examples in medical literature make use of the relative treatment effect (e.g. an odds ratio) reported by randomized trials to estimate the CATE using large observational datasets. One approach to estimating these CATE models is by using the relative treatment effect as an offset, while estimating the covariate-specific untreated risk. We observe that the odds ratios reported in randomized controlled trials are not the odds ratios that are needed in offset models because trials often report the marginal odds ratio. We introduce a constraint or a regularizer to better use marginal odds ratios from randomized controlled trials and find that under the standard observational causal inference assumptions, this approach provides a consistent estimate of the CATE. Next, we show that the offset approach is not valid for CATE estimation in the presence of unobserved confounding. We study if the offset assumption and the marginal constraint lead to better approximations of the CATE relative to the alternative of using the average treatment effect estimate from the randomized trial. We empirically show that when the underlying CATE has sufficient variation, the constraint and offset approaches lead to closer approximations to the CATE

    From algorithms to action: improving patient care requires causality

    Get PDF
    In cancer research there is much interest in building and validating outcome prediction models to support treatment decisions. However, because most outcome prediction models are developed and validated without regard to the causal aspects of treatment decision making, many published outcome prediction models may cause harm when used for decision making, despite being found accurate in validation studies. Guidelines on prediction model validation and the checklist for risk model endorsement by the American Joint Committee on Cancer do not protect against prediction models that are accurate during development and validation but harmful when used for decision making. We explain why this is the case and how to build and validate models that are useful for decision making

    Robustness of pulmonary nodule radiomic features on computed tomography as a function of varying radiation dose levels—a multi-dose in vivo patient study

    Get PDF
    Objective: Analysis of textural features of pulmonary nodules in chest CT, also known as radiomics, has several potential clinical applications, such as diagnosis, prognostication, and treatment response monitoring. For clinical use, it is essential that these features provide robust measurements. Studies with phantoms and simulated lower dose levels have demonstrated that radiomic features can vary with different radiation dose levels. This study presents an in vivo stability analysis of radiomic features for pulmonary nodules against varying radiation dose levels. Methods: Nineteen patients with a total of thirty-five pulmonary nodules underwent four chest CT scans at different radiation dose levels (60, 33, 24, and 15 mAs) in a single session. The nodules were manually delineated. To assess the robustness of features, we calculated the intra-class correlation coefficient (ICC). To visualize the effect of milliampere-second variation on groups of features, a linear model was fitted to each feature. We calculated bias and calculated the R2 value as a measure of goodness of fit. Results: A small minority of 15/100 (15%) radiomic features were considered stable (ICC > 0.9). Bias increased and R2decreased at lower dose, but shape features seemed to be more robust to milliampere-second variations than other feature classes. Conclusion: A large majority of pulmonary nodule radiomic features were not inherently robust to radiation dose level variations. For a subset of features, it was possible to correct this variability by a simple linear model. However, the correction became increasingly less accurate at lower radiation dose levels. Clinical relevance statement: Radiomic features provide a quantitative description of a tumor based on medical imaging such as computed tomography (CT). These features are potentially useful in several clinical tasks such as diagnosis, prognosis prediction, treatment effect monitoring, and treatment effect estimation. Key Points: • The vast majority of commonly used radiomic features are strongly influenced by variations in radiation dose level. • A small minority of radiomic features, notably the shape feature class, are robust against dose-level variations according to ICC calculations. • A large subset of radiomic features can be corrected by a linear model taking into account only the radiation dose level

    Baseline tumor-infiltrating lymphocyte patterns and response to immune checkpoint inhibition in metastatic cutaneous melanoma

    Get PDF
    Introduction: The presence of tumor-infiltrating lymphocytes (TILs) in melanoma has been linked to survival. Their predictive capability for immune checkpoint inhibition (ICI) response remains uncertain. Therefore, we investigated the association between treatment response and TILs in the largest cohort to date and analyzed if this association was independent of known clinical predictors. Methods: In this multicenter cohort study, patients who received first-line anti-PD1 ± anti-CTLA4 for advanced melanoma were identified. TILs were scored on hematoxylin and eosin (H&E) slides of primary melanoma and pre-treatment metastases using the validated TILs-WG, Clark and MIA score. The primary outcome was objective response rate (ORR), with progression free survival and overall survival being secondary outcomes. Univariable and multivariable logistic regression and Cox proportional hazard were performed, adjusting for known clinical predictors. Results: Metastatic melanoma specimens were available for 650 patients and primary specimens for 565 patients. No association was found in primary melanoma specimens. In metastatic specimens, a 10-point increase in the TILs-WG score was associated with a higher probability of response (aOR 1.17, 95 % CI 1.07–1.28), increased PFS (HR 0.93, 95 % CI 0.87–0.996), and OS (HR 0.94, 95 % CI 0.89–0.99). When categorized, patients in the highest tertile TILs-WG score (15–100 %) compared to the lowest tertile (0 %) had a longer median PFS (13.1 vs. 7.3 months, p = 0.04) and OS (49.4 vs. 19.5 months, p = 0.003). Similar results were noted using the MIA and Clark scores. Conclusion: In advanced melanoma patients, TIL patterns on H&E slides of pre-treatment metastases, regardless of measurement method, are independently associated with ICI response. TILs are easily scored on readily available H&Es, facilitating the use of this biomarker in clinical practice
    corecore