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Abstract
Objective  Analysis of textural features of pulmonary nodules in chest CT, also known as radiomics, has several potential 
clinical applications, such as diagnosis, prognostication, and treatment response monitoring. For clinical use, it is essential 
that these features provide robust measurements. Studies with phantoms and simulated lower dose levels have demonstrated 
that radiomic features can vary with different radiation dose levels. This study presents an in vivo stability analysis of radi-
omic features for pulmonary nodules against varying radiation dose levels.
Methods  Nineteen patients with a total of thirty-five pulmonary nodules underwent four chest CT scans at different radiation dose 
levels (60, 33, 24, and 15 mAs) in a single session. The nodules were manually delineated. To assess the robustness of features, 
we calculated the intra-class correlation coefficient (ICC). To visualize the effect of milliampere-second variation on groups of 
features, a linear model was fitted to each feature. We calculated bias and calculated the R2 value as a measure of goodness of fit.
Results  A small minority of 15/100 (15%) radiomic features were considered stable (ICC > 0.9). Bias increased and R2 decreased 
at lower dose, but shape features seemed to be more robust to milliampere-second variations than other feature classes.
Conclusion  A large majority of pulmonary nodule radiomic features were not inherently robust to radiation dose level vari-
ations. For a subset of features, it was possible to correct this variability by a simple linear model. However, the correction 
became increasingly less accurate at lower radiation dose levels.
Clinical relevance statement  Radiomic features provide a quantitative description of a tumor based on medical imaging such 
as computed tomography (CT). These features are potentially useful in several clinical tasks such as diagnosis, prognosis 
prediction, treatment effect monitoring, and treatment effect estimation.
Key Points 
• The vast majority of commonly used radiomic features are strongly influenced by variations in radiation dose level.
• A small minority of radiomic features, notably the shape feature class, are robust against dose-level variations according 

to ICC calculations.
• A large subset of radiomic features can be corrected by a linear model taking into account only the radiation dose level.
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Introduction

Advances in data science have led to a surge in imaging bio-
markers to improve lung cancer diagnosis, prognostication, 
and treatment response monitoring. Among these modern 
biomarkers is the class of computed tomography (CT) radi-
omic features. Radiomics is defined as the quantification of CT 
radiographic phenotype using data-characterization algorithms 
[1, 2]. Statistical models are used to relate these radiomic fea-
tures to diagnosis, prognostication, and treatment response.

Early detection of possibly malignant pulmonary nod-
ules would make it possible to start therapy in an earlier 
stage which is prognostically favorable [3]. Conversely, early 
discrimination of benign nodules from malignant nodules 
would relieve patients from unnecessary follow-up CT scans. 
Thus, the goal of radiomics is to go beyond morphologi-
cal imaging and to aid in the diagnosis, classification, and 
therapeutic decision-making of patients who undergo radio-
graphic imaging using statistical models.

For radiomic features to be useful in the clinical process, 
feature values need to be reproducible. This is to say, a fea-
ture should be influenced primarily by biological traits of the 
patient, and not by external conditions such as the type of CT 
equipment, reconstruction algorithm, region of interest (ROI) 
selection and segmentation, etc. A drawback of radiomic fea-
tures is that they seem to be sensitive to conditions currently 
not standardized in clinical care. One of these variables in CT 
scanning is the tube current–time product (milliampere-sec-
onds, or mAs). Computed tomography is a major source of 
radiation exposure related to medical imaging. To reduce the 
dose, the level of milliampere-seconds is lowered at the cost 
of increased image noise [4]. Because image noise increases 
non-linearly with decreasing milliampere-seconds [5], we 
hypothesize that this increase in noise will influence radi-
omic feature values. Although some phantom studies have 
shown that the effect of varying tube current on radiomic 
features does not significantly affect radiomic features [6], 
other studies have shown milliampere-second variation does 
in fact significantly influence radiomic feature values [7, 8]. 
Although several in vivo dose modulation radiomic feature 
robustness studies have been performed to date, these stud-
ies are retrospective in the sense that they compare features 
taken from a single diagnostic scan, and later follow-up scans 
[9, 10]. As mentioned in the systematic review by Reiazi 
et al: “The drawbacks of the retrospective studies are that the 
investigators did not have control over the parameters studied, 
and the range of the scan acquisition parameter variations 
were limited to those used in imaging patients.” [11]. Our 
study differs from these studies in that multiple scans with 
different radiation doses were obtained in a single examina-
tion within a time frame of approximately 20 min.

Therefore, we sought to investigate the in vivo robust-
ness of pulmonary nodule radiomic features in patients who 

underwent chest CT scans at four different radiation dose 
levels.

Methods

Study population and image acquisition

In this study, patients 50 years or older with 1 or more 
known pulmonary nodules scheduled for a follow-up chest 
CT were eligible for inclusion. Detailed inclusion criteria are 
listed in Appendix 1. IRB approval was given under refer-
ence number NL46146.041.13 [12, 13]. Participants signed 
a written informed consent form prior to inclusion in the 
study.

A 256-slice CT system (Brilliance iCT; Philips Health-
care) was used for image acquisition. Patients were asked 
to hold their breath at deep inspiration during each acquisi-
tion. After scout images were obtained, image acquisition 
was performed using our routine non-enhanced chest CT 
protocol, immediately followed by 3 acquisitions at reduced 
radiation dose levels. Automatic current selection was only 
used for the reference protocol and modified to the values as 
described for the lower-dose acquisitions. Z-axis dose modu-
lation and dynamic angular dose modulation were not used 
to minimize variation.

All acquisitions were performed with the same length (Z 
coverage). Images were reconstructed with a slice thickness 
of 1 mm and an increment of 0.7 mm. Tube current–time 
products of 60 (reference dose), 33 (45% reduction), 24 
(60% reduction), and 15 mAs (75% reduction) were used in 
combination with a tube voltage of 100 kV for patients with 
a weight less than 80 kg and a tube voltage of 120 kV for 
patients with a weight greater than 80 kg. Gantry rotation 
time was 0.33 s with a pitch of 0.758. No contrast medium 
was injected. Scans were reconstructed using filtered back 
projection (FBP). Data will be made available for non-com-
mercial purposes upon reasonable request to the authors.

Segmentation

For the evaluation of the stability of radiomic features of 
pulmonary nodules on computed tomography, pulmonary 
nodules were manually segmented in the open-source image 
processing software platform 3D Slicer (Slicer.org). Nodules 
were independently identified by two experienced radiolo-
gists to make sure no pulmonary nodules were missed. For 
each scan, a binary (3D) label map annotating the pulmonary 
nodules for each radiation dose level was created by manual 
segmentation with the help of the semiautomatic “grow from 
seeds” region growing volumetric segmentation algorithm 
[14]. Contours were generated by one author (G.B.) and 
independently verified by an experienced radiologist (P.J.).
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Radiomic features

The open-source python package for the extraction of radi-
omic features from medical imaging Pyradiomics (version 
2.2.0) was used to extract the radiomic features [15]. Statistical 
analysis was done in R (version 4.10.2). Seven different filters 
were applied to the images before feature extraction (including 
original image, no filter). Per filter, 86 features were extracted, 
divided into six different feature classes. The following feature 
classes were extracted: shape (only for the original image); 
gray-level co-occurrence matrix (GLCM); gray-level depend-
ence matrix (GLDM); first-order, gray-level run length matrix 
(GLRM); and gray-level size zone matrix (GLSZM) [15]. A 
detailed list of extracted features can be found in Appendix 2.

Statistical analysis

Statistical analysis was performed on a nodule level, using 
the package psych (version 1.9.11) in R. The intra-class cor-
relation coefficient 3.1 (ICC) was calculated to assess feature 
robustness [16] by assessing agreement in radiomic feature 
values between CT scans acquired with different radiation 
doses, and is calculated as follows:

where MSR = mean square for rows, MSE = mean square 
error, and k = number of different radiation dose levels. 
According to Koo et  al, ICC values less than 0.5 were 

ICC =
MSR −MSE

MSR + (k − 1)MSE

Fig. 1   Segmentation of three nodules from (left to right) 60-, 33-, 24-, and 15-mAs scans. Below each segmentation are listed high ICC shape 
(0.807), high ICC non-shape (0.966), and low ICC (0.207) feature values and increase in % compared to the 60-mAs feature value
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considered as having poor reproducibility, values less than 
0.75 as having moderate reproducibility, values between 
0.75 and 0.9 as having good reproducibility, and values over 
0.9 as having excellent reproducibility [17].

While the ICC metric is “ground truth agnostic,” 
treating every radiation dose level as being equivalent, 
it is arguably not the most optimal metric here. Due to 
the physical properties of computed tomography, a lower 
dose invariably leads to a worse signal-to-noise ratio. 
It is therefore likely that features extracted from lower-
dose images contain the same or less information about 
the underlying biology of the nodule. We therefore per-
formed an additional analysis where we treated the full-
dose scan as a ground-truth observation. Features were 
scaled by the subtraction of the mean and the division 
by the standard deviation of the highest radiation dose 
(60 mAs) scans. To investigate how well ground-truth 
radiomic feature values can be obtained from lower-dose 
acquisitions using linear transformations, separate linear 
regression models were fitted for each feature and each 
reduced dose level. Feature values for 60 mAs were used 
as ground truth. These linear models were used to evalu-
ate two metrics: bias and R2. Bias indicates the average 
deviation of feature values in a lower-dose setting from 
the average value in the full-dose (60 mAs) setting and is 
equal to the intercept term in a linear regression model. 
For each feature and for each dose level, the R2 measures 
how much of the variation in ground-truth values can 
be explained using a linear correction of the lower-dose 
values. An R2 value of 1 indicates that the values from 
the full-dose scan can be perfectly reconstructed from 
the lower-dose image using a linear model. A value of 0 
indicates that it is impossible to reconstruct the ground-
truth values from the lower-dose values using a linear 
model [18].

Results

Study population and radiomic feature extraction

Nineteen patients were included in the study, with ages rang-
ing from 61 to 79 years (mean age: 67 years), of which 12 
were male and 7 were female. Fifteen patients had lung nod-
ules (35 in total) of which 3 were malignant. Of the fifteen 
patients, three patients (2 male and 1 female, with 3 nodules) 
were excluded because they presented with lung masses 
(diameter ≥ 3 cm) instead of lung nodules [19]. In total, 12 
patients with 32 nodules with a median (IQR) diameter of 
7.1 (6.1–9.6) mm were included for analysis in this study. In 
total, 1218 features were extracted from 32*4 = 128 nodules. 
A graphical abstract of three nodules with exemplary 

feature values for the four different radiation doses is 
presented in Fig. 1.

Features considered stable (ICC)

Overall, only a minority of radiomic features were repro-
ducible. From the 100 features without a filter applied, 
15 features had excellent reproducibility (ICC > 0.9), 24 
features had good reproducibility (0.75 < ICC < 0.9), 31 
features had moderate reproducibility (0.5 < ICC < 0.75), 
and 30 features had poor reproducibility (ICC < 0.5). The 
top 30 ICC features are listed in Table 1. ICC values for 
all features are listed in Appendix 3. Of note, eight out 
of the top ten features with highest reproducibility were 
shape features. Overall, ten out of fourteen shape features 
were found to have an ICC value greater than 0.9 and can 
therefore be considered stable.

Table 1   Top 30/100 ICCs from original filter features

# Feature Value

1 original_glrlm_GrayLevelNonUniformity 0.966
2 shape_VoxelVolume 0.96
3 shape_MeshVolume 0.96
4 original_gldm_GrayLevelNonUniformity 0.952
5 shape_SurfaceArea 0.939
6 shape_MajorAxisLength 0.935
7 shape_LeastAxisLength 0.929
8 shape_Maximum2DDiameterSlice 0.928
9 shape_Maximum2DDiameterRow 0.92
10 shape_MinorAxisLength 0.913
11 shape_Maximum2DDiameterColumn 0.907
12 shape_Maximum3DDiameter 0.904
13 original_glcm_Imc2 0.902
14 original_glszm_GrayLevelNonUniformity 0.902
15 original_glcm_Imc1 0.901
16 original_glrlm_RunLengthNonUniformity 0.885
17 original_firstorder_90Percentile 0.881
18 original_firstorder_Median 0.856
19 original_glcm_Idn 0.855
20 original_glrlm_RunLengthNonUniformityNormalized 0.854
21 original_glrlm_RunPercentage 0.845
22 original_glszm_ZonePercentage 0.845
23 original_glrlm_ShortRunEmphasis 0.843
24 shape_SurfaceVolumeRatio 0.839
25 original_gldm_DependenceEntropy 0.836
26 original_gldm_DependenceNonUniformityNormalized 0.83
27 original_firstorder_Mean 0.83
28 original_glcm_Idmn 0.813
29 shape_Sphericity 0.807
30 original_glrlm_LongRunEmphasis 0.807
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Effect of lower radiation dose on radiomicfeature 
values (bias – R2)

From the separate linear regression fits, bias and R2 values 
were extracted. These values were plotted per filter cat-
egory and per feature class. In general, features showed 
bias which increased with decreasing dose. In addition, for 
most features, R2 values decreased for decreasing dose lev-
els (Figs. 2 and 3). One percent of features had a negative 
slope fit. These features were omitted from the remainder 
of the analyses because this would imply that at a lower 
dose, the prognostic/diagnostic interpretation of a feature 
would be inverted, thus making these features unpractical 

in a clinical setting. None of these features was from the 
subset of features without a filter applied. Negative slope 
features are listed in Appendix 4.

Bias increased and R2 decreased with decreasing radia-
tion dose (Figs. 2 and 3). In this analysis, the shape fea-
tures were also found to have better correctability (higher 
R2) compared to other features.

Robustness of features: radiomic feature classes 
(bias – R2, ICC)

To further analyze the robustness of radiomic features, the 
features were split in classes and bias versus R2 was plotted as 

Fig. 2   R2 boxplot filter per 
feature class
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a function of decreasing dose levels. The shape feature class 
was again found to be the most robust with the highest R2 
and the lowest bias (Fig. 4). An increasing trend in bias and a 
decreasing trend in R2 were visible for all feature classes as a 
function of radiation dose. In other words, the difference from 
the mean of the high-dose (60 mAs) features was least for 
the shape feature class. Moreover, the error of shape features 
was fit best of all features by a linear model as a function of 
dose. All features were found to have an increasing difference 
from the mean of the high-dose features and a worse fit of the 
linear model, when dose level decreased.

In addition, the ICC 3.1 was calculated [17]. ICC values 
per feature, split by feature class, are shown in Fig. 5.

Shape features had by far the highest ICC value of all 
feature classes, followed by GLRM features. This finding 
illustrates that shape features, followed by GLRM features, 
most strongly resemble each other in the different dose-level 
groups. Shape and first-order ICC, R2, and bias values are 
listed per feature in Tables 2 and 3.

Robustness of features: radiomic filters (bias – R2)

Another possible variable that influences the reproducibil-
ity of radiomic features is the application of a filter to the 
image before feature extraction. Features calculated from 
filtered images were often less reproducible than those from 

Fig. 3   Bias vs R2 plotting for 
different milliampere-second 
levels looking at all features, 
colored by filters. High bias 
means that the value for this 
feature is on average higher 
than that for the reference dose 
of 60 mAs. High R2 means that 
the deviation of feature values 
can be explained very well by a 
linear model taking into account 
only the dose (mAs)
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the original image. This is demonstrated in Fig. 6, where 
R2 and bias plots are shown for individual features, split 
by image filter. Figure 6 compares the original filter to the 
filter classes (Laplacian of Gaussian (LoG) (sigma 2, 3, 4, 
5), square, square root, logarithm, and gradient).

The trend of decrease in R2 and increase in bias were 
visible for all filters. Most filters were comparable to the 
original image regarding robustness of features. Wavelet, 
square, square root, logarithm, and gradient filters made 
the features less robust. The Laplacian of Gaussian filter 
seemed to make features remarkably more robust com-
pared to the use of the original non-filtered images and 
other filters.

Discussion

We performed an in vivo, intra-individual study on the 
robustness of radiomic features of pulmonary nodules as 
identified with computed tomography of the chest as a func-
tion of radiation dose levels. Except for shape features, we 
found that the majority of radiomic features are not stable 
against dose modulation. For a subset of features, it is pos-
sible to correct this variability by a simple linear model. 
However, the correction becomes increasingly less accurate 
at lower radiation doses.

Our finding that the majority of radiomic features are 
not stable against varying dose levels is concordant with 

Fig. 4   Bias vs R2 plotting for 
different milliampere-second 
levels and feature classes. High 
bias means that the value for 
this feature is on average higher 
than that for the reference dose 
of 60 mAs. R2 is a statistic that 
will give some information 
about the goodness of fit of a 
model. High R2 means that the 
deviation of feature values can 
be explained very well by a 
linear model taking into account 
only the dose (mAs)
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previously performed phantom studies that demonstrated a 
marked effect of CT tube current modulation on the value 
of several radiomic features [7, 8]. Our results are relevant 
for low-dose lung cancer screening. Globally, low-dose lung 
cancer screening is a growing trend and our findings under-
line the importance of standardizing the acquisition process. 
Ideally, screening and any follow-up examinations should be 
acquired on the same CT scanner with the same settings. Ini-
tiatives to standardize the process are being undertaken [1, 2].

The present results suggest that the most promising fea-
ture class regarding robustness is the shape feature class. 
Previous phantom studies have shown that shape features 
provide the most promising results regarding robustness 
against parameter variations (voxel geometry settings, dose 

level, segmentation of ROI) [20, 21]. We found that first-
order features were neither more robust nor more correctable 
by a linear model than other features. This is in contradic-
tion to Hepp et al and Kim et al who found that first-order 
features were among the most stable in, respectively, a noise 
simulation study and a phantom study [10, 17].

From signal-processing theory, we know that a lower 
radiation dose introduces increasingly random noise to radi-
omic feature values. This is analogous to how the human vis-
ual system perceives lower quality. In other words, increased 
noise impairs the clinical value of radiomic features. For 
some features, a lower dose does not lead to noise but to sys-
tematic differences that are correctable. The error of a subset 
of unstable features can very well be explained by a simple 

Fig. 5   ICC boxplot; high ICC 
values indicate robust features
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linear model (features with a high R2). This is a promising 
result for more complicated correction methods. Zhovannik 
et al used an additive correction model to decrease error in 
47 out of 62 feature values with at least a factor of 2 [7]. Wei 
et al used a 3D generative adversarial network to normalize 
reduced dose [22]. The decrease in error was significant for 
8 out of 9 features. In addition, Mahon et al demonstrated 
the usage of the ComBat (combatting batch effect) harmo-
nization algorithm, which greatly reduces the variation [20]. 
It remains to be seen if these methods can function as a 
uniform correcting method usable in clinical care. The vast 

number of filters applied to the original image, apart from 
LoG, does not seem to generate more reproducible features. 
This raises the question whether there is any need for filters 
in the already vast amount of radiomic features extracted 
from the original image. Our finding that features derived 
from LoG-filtered images are more robust to dose variation 
is novel and warrants more investigation.

A unique advantage of this study is the radiographic 
imaging dataset. Fifteen patients underwent a CT scan at 
four different dose levels sequentially. The nature of the radi-
ographic imaging dataset provides an opportunity to largely 

Table 2   ICC, R2, and bias for 
shape features

Feature ICC R2

15 mAs
Bias
15 mAs

R2

24 mAs
Bias
24 mAs

R2

33 mAs
Bias
33 mAs

VoxelVolume 0.96 0.92 0.02 0.95 0.11 0.96 0.09
Maximum3DDiameter 0.9 0.83  − 0.01 0.84 0.12 0.94 0.08
MeshVolume 0.96 0.92 0.02 0.95 0.11 0.95 0.09
MajorAxisLength 0.93 0.92 0.08 0.86 0.12 0.95 0.07
Sphericity 0.81 0.68 0.18 0.66 0.05 0.79 0.02
LeastAxisLength 0.93 0.84 0.07 0.89 0.12 0.9 0.12
Elongation 0.67 0.6 0 0.39 0.14 0.53 0
SurfaceVolumeRatio 0.84 0.67  − 0.24 0.71  − 0.22 0.84  − 0.19
Maximum2DDiameterSlice 0.93 0.92 0.06 0.83 0.19 0.92 0.16
Flatness 0.71 0.47 0.03 0.52 0.01 0.65  − 0.04
SurfaceArea 0.94 0.9 0.01 0.92 0.11 0.95 0.08
MinorAxisLength 0.91 0.89 0.06 0.8 0.18 0.92 0.12
Maximum2DDiameterColumn 0.91 0.88 0.09 0.8 0.1 0.88 0.14
Maximum2DDiameterRow 0.92 0.87  − 0.03 0.86 0.07 0.95 0.09

Table 3   ICC, R2, and bias for 
first-order features

Feature ICC R2

15 mAs
Bias
15 mAs

R2

24 mAs
Bias
24 mAs

R2

33 mAs
Bias
33 mAs

InterquartileRange 0.43 0.48  − 0.15 0.5 0 0.93  − 0.05
Skewness 0.69 0.28  − 0.05 0.24  − 0.18 0.62 0.03
Uniformity 0.6 0.9 0.37 0.86 0.04 0.98 0.19
Median 0.86 0.51 0.45 0.82 0.23 0.62 0.1
Energy 0.7 0.67  − 0.17 0.82 0.02 0.76 0.08
RobustMeanAbsoluteDeviation 0.43 0.6  − 0.18 0.57  − 0.04 0.91  − 0.11
MeanAbsoluteDeviation 0.35 0.66  − 0.31 0.57  − 0.14 0.9  − 0.15
TotalEnergy 0.68 0.66  − 0.18 0.81 0 0.76 0.08
Maximum 0.76 0.44  − 0.41 0.34  − 0.42 0.78  − 0.18
RootMeanSquared 0.75 0.7  − 0.67 0.71  − 0.44 0.9  − 0.12
90Percentile 0.88 0.87  − 0.14 0.56  − 0.06 0.82  − 0.1
Minimum 0.32 0.66 0.86 0.69 0.51 0.91 0.22
Entropy 0.54 0.88  − 0.27 0.75  − 0.06 0.97  − 0.15
Range 0.39 0.44  − 0.55 0.36  − 0.5 0.79  − 0.22
Variance 0.29 0.53  − 0.41 0.47  − 0.22 0.88  − 0.18
10Percentile 0.61 0.67 0.75 0.7 0.44 0.88 0.16
Kurtosis 0.61 0.05  − 0.08 0.05  − 0.14 0.42 0.02
Mean 0.83 0.77 0.12 0.75 0.11 0.91  − 0.01
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isolate variables other than dose levels. To the best of our 
knowledge, this study is the first multi-dose in vivo study on 
lung nodule radiomic feature reproducibility.

In general, we found shape features to be the most repro-
ducible feature class. Yet, for a feature to be of clinical 
value, it must improve the diagnostic or prognostic value. 
Davey et al showed sphericity strongly correlates with 
overall survival of patients with lung cancer [21]. Yan et al 
showed that sphericity showed good ability in distinguish-
ing adenocarcinoma from another lung cancer histological 
type using machine learning [23]. Liu et al found that a 
model for distinguishing benign from malignant lung nod-
ules based on ten features, among which was the shape 

feature sphericity, significantly outperformed a clinical 
variable-based model [23].

Shakir et al found that the shape feature surface volume 
ratio is most discriminative for nodule classification (benign 
vs malignant) out of 105 total features, using one-way ANOVA 
and three supervised selection algorithms [24]. Moreover, they 
found that the shape feature class had the highest relative con-
tribution in nodule classification out of all the feature classes.

Yang et al selected seven features, among which were 
the shape features surface volume ratio and elongation, for 
the best diagnostic performance using hierarchical cluster 
analysis and the ReliefF method. The value of the conclu-
sions on features with prognostic and/or diagnostic value 

Fig. 6   Bias vs R2 plotting for 
different milliampere-second 
levels and filters (original and 
wavelet). High bias means that 
the value for this feature is on 
average higher than that for the 
reference dose of 60 mAs. High 
R.2 means that the variation of 
feature values can be explained 
very well by a linear model tak-
ing into account only the dose 
(mAs)
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is limited by slight differences in sets of radiomic features 
studied compared to this study. Future study needs to con-
firm if the radiomic features described in the current study 
have prognostic and/or diagnostic value.

This study has limitations. Manual delineation of the nod-
ules was performed by only one investigator. Previous studies 
suggested that the standardization by using (semi-) automated 
segmentation methods provides more robust results [8, 25, 26]. 
However, the aim of the present study was to investigate if radi-
omics features are robust against dose modulation. We did not 
study whether features are sensitive to differences in ROI seg-
mentation. Furthermore, it is known from the literature that this 
is indeed the case [25, 27, 28]. Therefore, we decided to have 
only one person segment all the scans. The extent to which seg-
mentation differences interact with radiation dose reduction as 
to radiomics feature reproducibility is a very interesting question 
by itself and could very well be a direction for further research. 
Future studies should preferably be based on multiple delinea-
tions by multiple professionals or automation of segmentation. 
In addition, the high dimensionality of radiomic feature data 
hinders a simple presentation of results. To complicate the mat-
ter, a variety of presentation methods can be found in articles 
on the topic: ICC, concordance correlation coefficient (CCC), 
and coefficient of variation (COV) are all used interchangeably. 
This lack of consistency hinders comparison of results. For this 
study, we chose to plot bias and R2 to intuitively visualize trends 
and calculate the ICC to quantify robustness. Our study counts a 
relatively small size (32) of nodules studied. This study did not 
investigate the prognostic or diagnostic value of radiomic fea-
tures, only the stability of feature values over variations in radia-
tion dose. We recommend further studies to investigate on the 
stability of radiomic features over different isolated variations 
such as manual delineation, bin width, or different reconstruc-
tion algorithms. The latter might be especially relevant as in a 
review by Reiazi et al radiation dose was found to be a disrup-
tive parameter in all studies, whereas reconstruction algorithm 
appeared to be non-disruptive in about 50% of studies [11].

Also, we did not investigate the possible pre-processing of 
features or scans prior to feature calculation which might fur-
ther enhance reproducibility [29]. Along the same vein, this 
study only investigated the reproducibility of radiomic features 
extracted from FBP constructed scans. Especially at lower milli-
ampere-second levels, iterative reconstruction methods are used 
to decrease image noise. Shiri et al and Zhao et al showed that 
the variability and robustness of radiomic features in advanced 
reconstruction settings are feature-dependent [30, 31].

A solution to the possible lack of robustness of radiomic 
feature values is to standardize the process of feature extrac-
tion and possibly an (inter)national standardization of the 
clinical radiographic imaging setting. Although the latter 
seems a bridge too far currently, radiomic feature acquisi-
tion standardization initiatives are underway [2]. Finally, 
although the prespecified nature of radiomics features makes 

them better explainable/connectable to the underlying biol-
ogy, we cannot rule out that unsupervised deep learning 
techniques are less sensitive to variations in radiation dose.

In conclusion, a lower radiation dose introduces increasingly 
random noise and bias to radiomic feature values of pulmonary 
nodules. This noise can be corrected for by a linear model for 
a subset of features. We identified 15% of features as stable 
according to ICC, with shape as the most robust feature class.
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