1,118 research outputs found

    Hansenula polymorpha: An attractive model organism for molecular studies of peroxisome biogenesis and function

    Get PDF
    In wild-type Hansenula polymorpha the proliferation of peroxisomes is induced by various unconventional carbon- and nitrogen sources. Highest induction levels, up to 80% of the cytoplasmic volume, are observed in cells grown in methanol-limited chemostat cultures. Based on our accumulated experience, we are now able to precisely adjust both the level of peroxisome induction as well as their protein composition by specific adaptations in growth conditions. During the last few years a series of peroxisome-deficient (per) mutants of H. polymorpha have been isolated and characterized. Phenotypically these mutants are characterized by the fact that they are not able to grow on methanol. Three mutant phenotypes were defined on the basis of morphological criteria, namely: (a) mutants completely lacking peroxisomes (Per-; 13 complementation groups); (b) mutants containing few small peroxisomes which are partly impaired in the peroxisomal import of matrix proteins (Pim-; five complementation groups); and (c) mutants with aberrations in the peroxisomal substructure (Pss-; two complementation groups). In addition, several conditional Per-, Pim- and Pss- mutants have been obtained. In all cases the mutant phenotype was shown to be caused by a recessive mutation in one gene. However, we observed that different mutations in one gene may cause different morphological mutant phenotypes. A detailed genetic analysis revealed that several PER genes, essential for peroxisome biogenesis, are tightly linked and organized in a hierarchical fashion. The use of both constitual and conditional per mutants in current and future studies of the molecular mechanisms controlling peroxisome biogenesis and function is discussed.

    A comparative study of peroxisomal structures in Hansenula polymorpha pex mutants

    Get PDF
    In a recent study, we performed a systematic genome analysis for the conservation of genes involved in peroxisome biogenesis (PEX genes) in various fungi. We have now performed a systematic study of the morphology of peroxisome remnants (ā€˜ghostsā€™) in Hansenula polymorpha pex mutants (pex1ā€“pex20) and the level of peroxins and matrix proteins in these strains. To this end, all available H. polymorpha pex strains were grown under identical cultivation conditions in glucose-limited chemostat cultures and analyzed in detail. The H. polymorpha pex mutants could be categorized into four distinct groups, namely pex mutants containing: (1) virtually normal peroxisomal structures (pex7, pex17, pex20); (2) small peroxisomal membrane structures with a distinct lumen (pex2, pex4, pex5, pex10, pex12, pex14); (3) multilayered membrane structures lacking apparent matrix protein content (pex1, pex6, pex8, pex13); and (4) no peroxisomal structures (pex3, pex19).

    Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene

    Get PDF
    We aim to introduce the penicillin biosynthetic pathway into the methylotrophic yeast Hansenula polymorpha. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel hostā€“vector system based on methionine auxotrophy and the H. polymorpha MET6 gene, which encodes a putative cystathionine Ī²-lyase. With this new hostā€“vector system, the Penicillium chrysogenum pcl gene, encoding peroxisomal phenylacetyl-CoA ligase (PCL), was expressed in H. polymorpha. PCL has a potential C-terminal peroxisomal targeting signal type 1 (PTS1). Our data demonstrate that a green fluorescent proteinā€“PCL fusion protein has a dual location in the heterologous host in the cytosol and in peroxisomes. Mutation of the PTS1 of PCL (SKI-COOH) to SKL-COOH restored sorting of the fusion protein to peroxisomes only. Additionally, we demonstrate that peroxisomal PCLā€“SKL produced in H. polymorpha displays normal enzymatic activities.

    Peroxisomes:surprisingly versatile organelles

    Get PDF
    AbstractPeroxisome development is a dynamic process that is not yet completely understood. We use the methylotrophic yeast Hansenula polymorpha as model in our studies on peroxisome homeostasis. Cells of this species may contain different types of peroxisomes that differ in protein composition and capacity to incorporate matrix proteins. This protein import machinery is highly flexible and can accommodate unfolded and complex folded proteins

    Structure-function analysis of the ER-peroxisome contact site protein Pex32

    Get PDF
    In the yeast Hansenula polymorpha, the ER protein Pex32 is required for associating peroxisomes to the ER. Here, we report on a structure-function analysis of Pex32. Localization studies of various Pex32 truncations showed that the N-terminal transmembrane domain of Pex32 is responsible for sorting. Moreover, this part of the protein is sufficient for the function of Pex32 in peroxisome biogenesis. The C-terminal DysF domain is required for concentrating Pex32 at ER-peroxisome contact sites and has the ability to bind to peroxisomes. In order to better understand the role of Pex32 in peroxisome biogenesis, we analyzed various peroxisomal proteins in pex32 cells. This revealed that Pex11 levels are strongly reduced in pex32 cells. This may explain the strong reduction in peroxisome numbers in pex32 cells, which also occurs in cells lacking Pex11

    A crucial role of the mitochondrial protein import receptor MOM19 for the biogenesis of mitochondria

    Get PDF
    The novel genetic method of "sheltered RIP" (repeat induced point mutation) was used to generate a Neurospora crassa mutant in which MOM19, a component of the protein import machinery of the mitochondrial outer membrane, can be depleted. Deficiency in MOM19 resulted in a severe growth defect, but the cells remained viable. The number of mitochondrial profiles was not grossly changed, but mutant mitochondria were highly deficient in cristae membranes, cytochromes, and protein synthesis activity. Protein import into isolated mutant mitochondria was decreased by factors of 6 to 30 for most proteins from all suborganellar compartments. Proteins like the ADP/ATP carrier, MOM19, and cytochrome c, whose import into wild-type mitochondria occurs independently of MOM19 became imported normally showing that the reduced import activities are solely caused by a lack of MOM19. Depletion of MOM19 reveals a close functional relationship between MOM19 and MOM22, since loss of MOM19 led to decreased levels of MOM22 and reduced protein import through MOM22. Furthermore, MOM72 does not function as a general backup receptor for MOM19 suggesting that these two proteins have distinct precursor specificities. These findings demonstrate that the import receptor MOM19 fulfills an important role in the biogenesis of mitochondria and that it is essential for the formation of mitochondria competent in respiration and phosphorylation
    • ā€¦
    corecore