100 research outputs found

    Effects of Lorenzo's Oil on peroxisomes in healthy mice

    Get PDF
    We investigated peroxisomal alterations in mice treated with different doses of Lorenzo's Oil (a therapy for X-linked adrenoleukodystrophy patients) for up to 100 days. Hepatic erucic acid levels were already significantly increased 2.2-fold and 2.6-fold in mice treated with 10% and 20% Lorenzo's Oil for 21 days, respectively. No lipidosis was found in liver; myocardium and kidney of any of the treated mice. While hepatic catalase, lauroyl-CoA oxidase and glycolate oxidase, and renal catalase activities were not induced by either diet, myocardial catalase activity was increased in most groups. This suggests that the mechanism of the effect of Lorenzo's Oil in X-linked adrenoleukodystrophy patients may not be a direct effect on the peroxisomes

    Antioxidant actions of ovothiol-derived 4-mercaptoimidazoles: glutathione peroxidase activity and protection against peroxynitrite-induced damage

    Get PDF
    Abstract4-Mercaptoimidazoles derived from the naturally occurring antioxidants, ovothiols, were tested for their glutathione peroxidase-like (GSH Px-like) activity and protection against peroxynitrite-induced damage. All the thiol compounds displayed similar significant GSH Px-like activities, which are however weaker than that of the reference compound, ebselen. The inhibitions of the peroxynitrite-dependent oxidation of Evans blue dye and dihydrorhodamine 123 showed that the thiol compounds substituted on position 5 of the imidazole ring were nearly as effective as ebselen while the C-2 substituted ones were less effective. Both assays corroborate the large superiority of mercaptoimidazoles over glutathione as inhibitors of peroxynitrite-dependent oxidation

    Involvement of KCa3.1 channel activity in immediate perioperative cognitive and neuroinflammatory outcomes.

    Full text link
    peer reviewed[en] BACKGROUND: Potassium channels (KCa3.1; Kv1.3; Kir2.1) are necessary for microglial activation, a pivotal requirement for the development of Perioperative Neurocognitive Disorders (PNDs). We previously reported on the role of microglial Kv1.3 for PNDs; the present study sought to determine whether inhibiting KCa3.1 channel activity affects neuroinflammation and prevents development of PND. METHODS: Mice (wild-type [WT] and KCa3.1-/-) underwent aseptic tibial fracture trauma under isoflurane anesthesia or received anesthesia alone. WT mice received either TRAM34 (a specific KCa3.1 channel inhibitor) dissolved in its vehicle (miglyol) or miglyol alone. Spatial memory was assessed in the Y-maze paradigm 6 h post-surgery/anesthesia. Circulating interleukin-6 (IL-6) and high mobility group box-1 protein (HMGB1) were assessed by ELISA, and microglial activitation Iba-1 staining. RESULTS: In WT mice surgery induced significant cognitive decline in the Y-maze test, p = 0.019), microgliosis (p = 0.001), and increases in plasma IL-6 (p = 0.002) and HMGB1 (p = 0.001) when compared to anesthesia alone. TRAM34 administration attenuated the surgery-induced changes in cognition, microglial activation, and HMGB1 but not circulating IL-6 levels. In KCa3.1-/- mice surgery neither affected cognition nor microgliosis, although circulating IL-6 levels did increase (p < 0.001). CONCLUSION: Similar to our earlier report with Kv1.3, perioperative microglial KCa3.1 blockade decreases immediate perioperative cognitive changes, microgliosis as well as the peripheral trauma marker HMGB1 although surgery-induced IL-6 elevation was unchanged. Future research should address whether a synergistic interaction exists between blockade of Kv1.3 and KCa3.1 for preventing PNDs

    Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality

    Get PDF
    BACKGROUND: Recently, the type 2 diabetes medication, rosiglitazone, has come under scrutiny for possibly increasing the risk of cardiac disease and death. To investigate the effects of rosiglitazone on the diabetic heart, we performed cardiac transcriptional profiling and imaging studies of a murine model of type 2 diabetes, the C57BL/KLS-lepr(db)/lepr(db) (db/db) mouse. METHODS AND FINDINGS: We compared cardiac gene expression profiles from three groups: untreated db/db mice, db/db mice after rosiglitazone treatment, and non-diabetic db/+ mice. Prior to sacrifice, we also performed cardiac magnetic resonance (CMR) and echocardiography. As expected, overall the db/db gene expression signature was markedly different from control, but to our surprise was not significantly reversed with rosiglitazone. In particular, we have uncovered a number of rosiglitazone modulated genes and pathways that may play a role in the pathophysiology of the increase in cardiac mortality as seen in several recent meta-analyses. Specifically, the cumulative upregulation of (1) a matrix metalloproteinase gene that has previously been implicated in plaque rupture, (2) potassium channel genes involved in membrane potential maintenance and action potential generation, and (3) sphingolipid and ceramide metabolism-related genes, together give cause for concern over rosiglitazone's safety. Lastly, in vivo imaging studies revealed minimal differences between rosiglitazone-treated and untreated db/db mouse hearts, indicating that rosiglitazone's effects on gene expression in the heart do not immediately turn into detectable gross functional changes. CONCLUSIONS: This study maps the genomic expression patterns in the hearts of the db/db murine model of diabetes and illustrates the impact of rosiglitazone on these patterns. The db/db gene expression signature was markedly different from control, and was not reversed with rosiglitazone. A smaller number of unique and interesting changes in gene expression were noted with rosiglitazone treatment. Further study of these genes and molecular pathways will provide important insights into the cardiac decompensation associated with both diabetes and rosiglitazone treatment

    Fluorometric assay of peroxisomal oxidases.

    No full text
    The present paper deals with the adaptation of the fluorometric measurement of H2O2 originally described by Guilbault et al. (1967, Anal. Chem. 39, 271) for the assay of the peroxisomal oxidation of D-amino acids, L-alpha-hydroxyacids, uric acid, and acyl-CoA esters. The present work essentially covers three facets: (i) the general kinetics of the assay of peroxisomal oxidases and the influence of each component of the assay medium on these kinetics; (ii) the measurement of peroxisomal oxidase activities in subcellular fractions and tissues from human and untreated and clofibrate-treated rodents; and (iii) the comparison between the oxidase activities measured by the fluorometric and spectrophotometric methods

    Peroxisomal B-oxidation in health and disease

    No full text
    Mammalian peroxisomes are subcellular organelles involved in the metabolism of hydrogen peroxide (oxidases, catalase), lipid anabolism (ether lipid biosynthesis), and intermediary metabolism (transaminases, dehydrogenases). Peroxisomes are formed by division, as is the case for mitochondria, but, unlike these organelles, they do not contain DNA. Peroxisomes were discovered and characterized (by biochemical and morphological techniques) later than most of the other cell organelles when specific procedures had been developed for their isolation. The functions of peroxisomes are, as a rule, shared with other cell compartments so that specific assays for peroxisomal enzymes had to be designed. The combination of the application of specific isolation methods, enzyme assays and morphological analysis has resulted in our current knowledge of peroxisomal physiology which has also greatly benefited from the study of the inborn errors of peroxisomal metabolism and from progress in molecular biology. Novel enzymes and metabolic pathways have been demonstrated to exist in peroxisomes at the same time that human genetic disorders affecting one or several of these functions have been recognized. Chapter 1: Peroxisomal β-oxidation in health Fatty acyl-CoA β-oxidation was believed to be the prerogative of mitochondria in animal tissues until the discovery by Lazarow and de Duve of a β-oxidation system in rat liver peroxisomes. The occurrence of β-oxidation system in the two organelles raises questions about the substrate specificity, relative contribution and regulation of each pathway. Substrate specificity In mammals, the most abundant physiological candidates for β-oxidation are long-chain fatty acids. These substrates represent an important source of metabolic fuel. In rat liver, the relative contributions of mitochondria and peroxisomes to their oxidation can be estimated to about 95 and 5%, respectively. In peroxisomes, β-oxidation concerns a wide variety of substrates allowing these organelles to metabolize a variety of carboxylic substrates including bile acid precursors, prostaglandins, very long-chain and polyunsaturated fatty acids, long-chain dicarboxylates, omega-hydroxymonocarboxylates and monocarcarboxylates, as well as xenobiotics. The mitochondrial β-oxidation of several of these compounds is inefficient so that peroxisomes could be considered as detoxifying organelles. In all case, peroximal β-oxidation results in a incomplete chain-shortening of the substrates. The resulting shortened products are either more reality excreted such as, for instance, bile acids, prostaglandins, dicarboxylates and some xenobiotics or further β-oxidized by mitochondria in the case of very long- and long-chain saturated and unsaturated fatty acids. Three auxiliary β-oxidation enzymes may be required for the oxidation of the unsaturated fatty acids: an enoyl-CoA reductase, an enoyl-CoA isomerase and a β-hydroxyacyl-CoA epimerase. All three are found in peroxisomes, whereas mitochondria contain the enoyl-CoA reductase and isomerase but not the epimerase. The substrates (monocarboxylates), intermediates (omega-hydroxy-monocarbocylates) and products (dicarboxylates) of the omega-oxidation of fatty acids are all candidates for hepatic actiation and subsequent acyl-CoA β-oxidation. The rates of mitochondrial β-oxidation recorded with long-chain monocarboxylates and omega-hydroxymonocarboxylates are roughly of the same magnitude but are more than ten –fold higher than those found with long-chain dicarboxylates. In contrast, the three kinds of carboxylates are oxidized at about the same rate by peroxisomes. Nevertheless, the results of in vivo experiments suggest that mitochondrial β-oxidation may be the major pathway for the breakdown of long- and medium-chain dicarboxylates. […]Thèse d'agrégation de l'enseignement supérieur (Faculté de médecine) -- UCL, 198

    Pathophysiology of peroxisomal beta-oxidation.

    No full text
    Mammalian peroxisomes are subcellular organelles involved in the metabolism of hydrogen peroxide (oxidases, catalase), lipid anabolism (ether lipid biosynthesis) and catabolism (oxidation of fatty acids and fatty acid derivatives), and intermediary metabolism (transaminases, dehydrogenases). Peroxisomes are formed by division, as is the case for mitochondria, but, in contrast to these organelles, they do not contain DNA. They were discovered and characterized (by biochemical and morphological techniques) later than the majority of the other cell components and specific procedures have been developed for their isolation. Functions of peroxisomes are, as a rule, shared by other cell compartments so that specific enzyme assays have also been developed. Combination of specific isolation procedures, enzyme assays and morphological analysis have resulted in our current knowledge of peroxisomal physiology which, however, has greatly benefited, as in the case of lysosomes, from the study of inborn errors of metabolism and the contribution of molecular biology. Novel enzymes and metabolic pathways have been demonstrated to exist in peroxisomes and human genetic disorders affecting one or several of these functions have been recognized

    La protéine disulfide isomérase et l'ischémie cérébrale (une voie de neuroprotection ?)

    No full text
    es accidents vasculaires cérébraux (AVC) représentent, dans nos contrées, une cause importante de handicap et de mortalité. Les approches thérapeutiques restent toutefois relativement impuissantes face à ce problème de santé publique. Elles reposent essentiellement sur la prévention ou la suppression de facteurs de risques tels que le tabagisme, l'hypertension ou encore l'hypercholestérolémie. L'AVC peut être hémorragique, mais dans 80% des cas son origine vasculaire est obstructive. Son traitement aigu peut dans ce cas bénéficier d'agents thrombolytiques dont l'administration est cependant soumise à une fenêtre d'intervention immédiate relativement étroite. L'efficacité d'agents neuroprotecteurs, dont la finalité est de protéger le cerveau des conséquences délétères de l'ischémie/reperfusion cérébrale inhérente à l'AVC (lésions irréversibles et handicap), reste aujourd'hui assez décevante. La recherche de nouvelles cibles thérapeutiques s'impose dès lors plus que jamais dans ce domaine. S'intéressant aux protéines dont la concentration peut varier au cours du temps, une étude protéomique préliminaire a mis en évidence l'augmentation de la protéine disulfure isomérase (PDI) au cours de l'ischémie reperfusion cérébrale (IRC), un résultat en accord avec les données de la littérature (Tanaka, S., Uehara, T., Nomura, Y., 2000, J. Biol. Chem. 275, 10388-10393). La PDI est une protéine chaperonne dotée d'une activité oxydoréductase/isomérase et est principalement localisée dans le réticulum endoplasmique. Elle assiste le repliement des protéines par la formation ou le déplacement de ponts disulfures. Les agents modulateurs de la PDI incluent l'alcool 4-hydroxybenzylique (4-HBA) et la bacitracine, respectivement inducteur et inhibiteur de cette protéine. Pour déterminer le rôle potentiellement bénéfique ou délétère de la PDI dans l'IRC, l'impact cérébral des modulateurs précités a été étudié dans un modèle murin d'IRC basé sur l'occlusion unilatérale et transitoire de l'artère cérébrale moyenne chez la souris. Dans ce modèle expérimental, le 4-HBA réduit significativement (respectivement de 22 et 55%). la taille de l'infarctus cérébral touchant le cortex et le striatum. L'implication de la PDI dans cette protection cérébrale est confirmée par la suppression de l'effet protecteur du 4-HBA par la bacitracine, le 4-HBA ne manifestant par ailleurs aucune propriété anti-oedémateuse dans le modèle expérimental d'IRC. L'induction de la PDI par le 4-HBA a elle été démontrée sur le cerveau sain de souris, la protéine étant quantifiée par immuno-chemiluminescence après migration électrophorétique (Western blots). Différents isomères de position (alcool 2-hydroxybenzylique et alcool 3-hydroxybenzylique) ainsi que des analogues aliphatiques (1,4-butanediol et 1,5-pentanediol) du 4-HBA se sont avérés, à l'inverse du dernier, incapables de réduire la taille des lésions cérébrales dans le modèle expérimental d'IRC et d'induire la PDI cérébrale. Le potentiel neuroprotecteur du 4-HBA a été étudié dans un autre modèle d'évaluation, à savoir celui des crises audiogènes chez la souris déficiente en magnésium, connu pour sa réponse aux agents anticonvulsivants mais aussi aux composés antioxydants (Vamecq, J., Maurois, P., Bac, P., Bailly, F., Bernier, J.L., Stables, J.P., Husson, I.,Gressens, P., 2003, Eur. J. Neurosci. 18, 1110-1120). La dose de 4-HBA protégeant 50% des animaux vis-à-vis de la crise audiogène était de 25 mg/kg contre 35mg/kg pour la 6-hydroxyflavanone (6-HFN), une flavone de référence active dans ce test. Ces résultats suggérant un potentiel antioxydant similaire des deux composés ont conduit à une étude comparative de leurs effets protecteurs dans le modèle murin d'IRC. Cette étude tout en confirmant la protection offerte par le 4-HBA dans l'IRC expérimentale a révélé l'incapacité du 6-HFN d'induire une protection significative dans ce modèle. A l'inverse du 4-HBA, le 6-HFN n'induisait pas la PDI cérébrale murine, confortant ici l'hypothèse que la protection du 4-HBA vis-à-vis de l'IRC résulte plus de sa capacité à induire la PDI que d'autres de ses propriétés parmi lesquelles son potentiel antioxydant. Finalement, le 4-HBA, à des doses atteignant 200 mg/kg, s'est avéré dénué de toxicité dans le test de la barre tournante. En conclusion, le 4-HBA représente un agent neuroprotecteur actif dans plusieurs modèles d'évaluation. Son efficacité vis-à-vis des lésions induites par l'IRC semble étroitement liée à sa capacité à induire la PDI cérébrale, faisant dès lors de cette protéine une cible pharmacologique prometteuse pour le développement pharmacologique de composés actifs dans l'AVCLILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF

    Interactions between the omega- and beta-oxidations of fatty acids.

    No full text
    Long-chain monocarboxylic, omega-hydroxymonocarboxylic and dicarboxylic acids were activated approximately at the same rate by rat liver homogenates into their CoA esters (2-3 U/g liver). These acyl-CoA were substrates for rat liver peroxisomal beta-oxidation. The distribution of the peroxisomal oxidation of these substrates was also studied in various tissues. Rat liver mitochondria were capable of oxidizing long-chain monocarboxyl- and omega-hydroxymonocarboxylyl-CoAs but not dicarboxylyl-CoAs. When the mitochondrial preparations were incubated in coupling conditions, the addition of either free decanoic acid or free 10-hydroxydecanoic acid resulted in an increase of the oxygen uptake conversely to the addition of decanedioic acid. The comparative study of the chain-length substrate specificity of peroxisomal fatty acyl-CoA oxidase and mitochondrial fatty acyl-CoA dehydrogenase activities revealed that, actually, both types of organelles, peroxisomes and mitochondria, contain "oxido-reductases" active on long-chain monocarboxylyl-CoAs, omega-hydroxymonocarboxylyl-CoAs and dicarboxylyl-CoAs
    • …
    corecore