4 research outputs found

    Soil Contamination Mapping with Hyperspectral Imagery: Pre- Dnieper Chemical Plant (Ukraine) Case Study

    Get PDF
    Radioactive contamination of soils is an issue of severe importance for Ukraine remaining with a significant post-Soviet baggage of not settled problems regarding radioactive waste. Regular radioecological observations and up-to-date contamination mapping based on advanced geoinformation techniques give an ability to prepare for, respond to, and manage potential adverse effects from pollution with radionuclides and heavy metals. Hyperspectral satellite imagery provides potentially powerful tool for soil contamination detection and mapping. An intention to find a relation between remotely sensed hyperspectral and ground-based measured soil contamination fractions in area of the uranium mill tailings deposits near Kamianske city was made. An advanced algorithm based on known TCMI (target-constrained minimal interference)-matched filter with a nonnegative constraint was applied to determine the soil contamination fractions by hyperspectral imagery. The time series maps of spatial distribution of the soil contamination fractions within study area around the Sukhachevske tailings dump are presented. Time series analysis of the map resulted in two independent parameters: the average value for the entire observation period and the daily mean increment of the soil contamination fractions

    Substituents' effect on the photophysics of trinuclear copper(I) and silver(I) pyrazolatephosphine cages

    No full text
    International audienceA series of structurally similar trinuclear macrocyclic copper(I) and silver(I) pyrazolate complexes bearing various short-bite diphosphine R2PCH(Râ€Č)PR2 ligands are reported. Upon diphosphine coordination, the planar geometry of the initial complexes undergoes bending along the line between two metal atoms coordinated to the phosphorus moieties. The complexes based on dcpm ligands (R = cyclohexyl, Râ€Č = H, Ph) do not exhibit dynamic behavior in solution at room temperature on the 31P NMR time scale as it was previously observed for similar trinuclear copper complexes bearing the dppm (R = Ph, Râ€Č = H) scaffold. All copper(I) complexes exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. Importantly, the use of aliphatic substituents on the phosphorus atoms instead of aromatic ones leads to an almost double increase in the quantum efficiency (ΊPL) of photoluminescence by eliminating nonradiative decay from the 3LCPh states of the dppm aromatic rings. The higher donating ability of the substituents in the pyrazolate ligand (CF3 vs CH3) lowers the energy of the metal-centered excited state, allowing for a significant metal impact on the T1 state. Finally, the Ag(I) complex displays an emission efficiency of approximately 14%, being the highest among known trinuclear silver(I) pyrazolate homometallic derivatives

    The Dichotomy of Mn–H Bond Cleavage and Kinetic Hydricity of Tricarbonyl Manganese Hydride Complexes

    No full text
    Acid-base characteristics (acidity, pKa, and hydricity, ΔG°H− or kH−) of metal hydride complexes could be a helpful value for forecasting their activity in various catalytic reactions. Polarity of the M–H bond may change radically at the stage of formation of a non-covalent adduct with an acidic/basic partner. This stage is responsible for subsequent hydrogen ion (hydride or proton) transfer. Here, the reaction of tricarbonyl manganese hydrides mer,trans–[L2Mn(CO)3H] (1; L = P(OPh)3, 2; L = PPh3) and fac–[(L–Lâ€Č)Mn(CO)3H] (3, L–Lâ€Č = Ph2PCH2PPh2 (dppm); 4, L–Lâ€Č = Ph2PCH2–NHC) with organic bases and Lewis acid (B(C6F5)3) was explored by spectroscopic (IR, NMR) methods to find the conditions for the Mn–H bond repolarization. Complex 1, bearing phosphite ligands, features acidic properties (pKa 21.3) but can serve also as a hydride donor (ΔG≠298K = 19.8 kcal/mol). Complex 3 with pronounced hydride character can be deprotonated with KHMDS at the CH2–bridge position in THF and at the Mn–H position in MeCN. The kinetic hydricity of manganese complexes 1–4 increases in the order mer,trans–[(P(OPh)3)2Mn(CO)3H] (1) mer,trans–[(PPh3)2Mn(CO)3H] (2) ≈ fac–[(dppm)Mn(CO)3H] (3) fac–[(Ph2PCH2NHC)Mn(CO)3H] (4), corresponding to the gain of the phosphorus ligand electron-donor properties
    corecore