456 research outputs found

    Habitat fragmentation and anthropogenic factors affect wildcat Felis silvestris silvestris occupancy and detectability on Mt Etna

    Get PDF
    Knowledge of patterns of occupancy is crucial for planning sound biological management and for identifying areas which require paramount conservation attention. The European wildcat Felis silvestris is an elusive carnivore and is classified as ‘least concern’ on the IUCN red list, but with a decreasing population trend in some areas. Sicily hosts a peculiar wildcat population, which deserves conservation and management actions, due to its isolation from the mainland. Patterns of occupancy for wildcats are unknown in Italy, and especially in Sicily. We aimed to identify which ecological drivers determined wildcat occurrence on Mt Etna and to provide conservation actions to promote the wildcats’ long-term survival in this peculiar environment. The genetic identity of the wildcat population was confirmed through a scat-collection which detected 22 different wildcat individuals. We analysed wildcat detections collected by 91 cameras using an occupancy frame work to assess which covariates influenced the detection (p) and the occupancy (ψ) estimates. We recorded 70 detections of the target species from 38 cameras within 3377 trap-days. Wildcat detection was positively influenced by the distance to the major paved roads and negatively affected by the presence of humans. Wildcat occupancy was positively associated with mixed forest and negatively influenced by pine forest, fragmentation of mixed forest and altitude. A spatially explicit predicted occupancy map, validated using an independent dataset of wildcat presence records, showed that higher occupancy estimates were scattered, mainly located on the north face and at lower altitude. Habitat fragmentation has been claimed as a significant threat for the wildcat and this is the first study that has ascertained this as a limiting factor for wildcat occurrence. Conservation actions should promote interconnectivity between areas with high predicted wildcat occupancy while minimising the loss of habitat

    On the probability distribution function of small scale interplanetary magnetic field fluctuations

    Get PDF
    In spite of a large number of papers dedicated to study MHD turbulence in the solar wind there are still some simple questions which have never been sufficiently addressed like: a)do we really know how the magnetic field vector orientation fluctuates in space? b) what is the statistics followed by the orientation of the vector itself? c) does the statistics change as the wind expands into the interplanetary space? A better understanding of these points can help us to better characterize the nature of interplanetary fluctuations and can provide useful hints to investigators who try to numerically simulate MHD turbulence. This work follows a recent paper presented by the same authors. This work follows a recent paper presented by some of the authors which shows that these fluctuations might resemble a sort of random walk governed by a Truncated Leevy Flight statistics. However, the limited statistics used in that paper did not allow final conclusions but only speculative hypotheses. In this work we aim to address the same problem using a more robust statistics which on one hand forces us not to consider velocity fluctuations but, on the other hand allows us to establish the nature of the governing statistics of magnetic fluctuations with more confidence. In addition, we show how features similar to those found in the present statistical analysis for the fast speed streams of solar wind, are qualitatively recovered in numerical simulations of the parametric instability. This might offer an alternative viewpoint for interpreting the questions raised above.Comment: 25pag, 20 jpg small size figures. In press on "ANnales Geophysicae" (September 2004

    Morphological variation of the newly confirmed population of the javelin sand boa, Eryx jaculus (Linnaeus, 1758) (Serpentes, erycidae) in Sicily, Italy

    Get PDF
    The presence of the Javelin sand boa in Sicily has recently been confirmed. Here the morphological characters and sexual dimorphism of the Sicilian population of Eryx jaculus are presented. Seven meristic and six metric characters in 96 specimens from Sicily were examined. The results show that tail length, snout-vent length, the distance between nostrils and the number of ventral and subcaudal scales are different between sexes. The characters found in the Sicilian population of the Javelin sand boa resemble those of the African population (ssp. jaculus) rather than the Eurasian population (ssp. turcicus), but biomolecular studies are necessary to understand its taxonomic identity

    mtDNA diversity in rabbit population from Sicily (Italy)

    Get PDF
    The European rabbit Oryctolagus cuniculus (O.c) lives all over the world and it represents an important resource for many predators. It has been classified as a Near-Threatened species in the Red List of Vertebrates of Italy. It is present in mediterranean basin as two known subspecies: O.c. cuniculus and O.c. algirus. The mediterranean geographic distribution of the two subspecies is still not well known. In particular, in Sicily, lacking of deep studies, is based on the body size and morphological characteristics; there wasn’t a complete description of the actual existing subspecies and previous studies only reported the morphological characteristics of the sicilian rabbit population. In this study, we analyzed genetic data, mitochondrial (mt) cytochrome b (cytb), from the rabbit population in Sicily in a phylogenetic framework. This is the first study concerning the genetics of the sicilian rabbit, to reconstruct intraspecific phylogeny by comparing cytb mtDNA sequences of 13 newly isolated O.cuniculus haplotypes from Sicily and 7 individuals from other countries (Canada, France, Mexico, North Italy, South Africa, Spain, Sweden). Our results show that the rabbit population from Sicily has a mitochondrial type (Lineage B) that has been previously shown to be associated with O. c. cuniculus and is similar to sequences from rabbits in North-Est Spain, Southern France, Sweden and South Africa

    Modelling the double cantilever beam test with bending moments by using bilinear discontinuous cohesive laws

    Get PDF
    A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) is presented. The specimen is modelled as the assemblage of two laminated beams connected by a cohesive interface. It is assumed that the traction-separation laws – i.e. the relationships between the interfacial stresses and relative displacements – are described by bilinear discontinuous functions. An analytical solution for pure modes I and II is determined by solving the related differential problem. Furthermore, analysis based on the path-independent J integral is carried out. Formulas are given to determine the cohesive law parameters from experiments. Experimental tests have been conducted on glass fibre reinforced specimens under pure mode I and II loading conditions. The predictions of the theoretical model turn out to be in very good agreement with the experimental results

    Coherent structures and spectral energy transfer in turbulent plasma: A space-filter approach

    Get PDF
    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space
    corecore