2 research outputs found
Effect of disinfection techniques on physical-mechanical properties of a microwave-activated acrylic resin
<div><p>Abstract The effects of disinfection by microwave irradiation and immersion in peracetic acid on the physical-mechanical properties of a microwave-activated acrylic resin were evaluated. Specimens of acrylic resin were divided into a control group (specimens not disinfected) and 2 test groups subjected to one disinfection method: microwave irradiation at 850 W for 1 minute or immersion in 50 mL of 0.2% peracetic acid for 5 minutes. Specimens were submitted to Knoop hardness, flexural strength, flexural modulus, Izod impact, water sorption and solubility, glass transition temperature, and degree of conversion tests. Microwave disinfection significantly increased the mean Knoop hardness, Izod impact strength, water sorption, water solubility and glass transition temperature, whereas the flexural properties remained unaffected. Microwave disinfection increased the degree of conversion. Peracetic acid disinfection showed no changes in any properties. Both disinfection techniques did not adversely affect the evaluated properties.</p></div
Effect of disinfection techniques on physical-mechanical properties of a microwave-activated acrylic resin
<div><p>Abstract The effects of disinfection by microwave irradiation and immersion in peracetic acid on the physical-mechanical properties of a microwave-activated acrylic resin were evaluated. Specimens of acrylic resin were divided into a control group (specimens not disinfected) and 2 test groups subjected to one disinfection method: microwave irradiation at 850 W for 1 minute or immersion in 50 mL of 0.2% peracetic acid for 5 minutes. Specimens were submitted to Knoop hardness, flexural strength, flexural modulus, Izod impact, water sorption and solubility, glass transition temperature, and degree of conversion tests. Microwave disinfection significantly increased the mean Knoop hardness, Izod impact strength, water sorption, water solubility and glass transition temperature, whereas the flexural properties remained unaffected. Microwave disinfection increased the degree of conversion. Peracetic acid disinfection showed no changes in any properties. Both disinfection techniques did not adversely affect the evaluated properties.</p></div