908 research outputs found
Microstability analysis of pellet fuelled discharges in MAST
Reactor grade plasmas are likely to be fuelled by pellet injection. This
technique transiently perturbs the profiles, driving the density profile hollow
and flattening the edge temperature profile. After the pellet perturbation, the
density and temperature profiles relax towards their quasi-steady-state shape.
Microinstabilities influence plasma confinement and will play a role in
determining the evolution of the profiles in pellet fuelled plasmas. In this
paper we present the microstability analysis of pellet fuelled H-mode MAST
plasmas. Taking advantage of the unique capabilities of the MAST Thomson
scattering system and the possibility of synchronizing the eight lasers with
the pellet injection, we were able to measure the evolution of the post-pellet
electron density and temperature profiles with high temporal and spatial
resolution. These profiles, together with ion temperature profiles measured
using a charge exchange diagnostic, were used to produce equilibria suitable
for microstability analysis of the equilibrium changes induced by pellet
injection. This analysis, carried out using the local gyrokinetic code GS2,
reveals that the microstability properties are extremely sensitive to the rapid
and large transient excursions of the density and temperature profiles, which
also change collisionality and beta e significantly in the region most strongly
affected by the pellet ablation.Comment: 21 pages, 10 figures. This is an author-created, un-copyedited
version of an article submitted for publication in Plasma Physics and
Controlled Fusion. IOP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from i
Charge dependence of neoclassical and turbulent transport of light impurities on MAST
Carbon and nitrogen impurity transport coefficients are determined from gas
puff experiments carried out during repeat L-mode discharges on the Mega-Amp
Spherical Tokamak (MAST) and compared against a previous analysis of helium
impurity transport on MAST. The impurity density profiles are measured on the
low-field side of the plasma, therefore this paper focuses on light impurities
where the impact of poloidal asymmetries on impurity transport is predicted to
be negligible. A weak screening of carbon and nitrogen is found in the plasma
core, whereas the helium density profile is peaked over the entire plasma
radius.Comment: 17 pages, 7 figure
Pellet fuelling with edge-localised modes controlled by external magnetic perturbations in MAST
The fuelling of plasmas by shallow frozen pellets with simultaneous
mitigation of edge localised modes (ELM) by external magnetic perturbation is
demonstrated on the MAST tokamak. Post-pellet particle loss is dominated by
ELMs and inter-ELM gas fuelling. It is shown that the size of post-pellet ELMs
can be controlled by external magnetic perturbations. Post-pellet ELMs remove
particles from the large part of pellet deposition zone including the area with
positive density gradient. The mechanism explaining this peculiarity of
particle loss is suggested.Comment: 7 pages, 4 figures. This is an author-created, un-copyedited version
of an article submitted for publication in Nuclear Fusion. IOP Publishing Ltd
and IAEA are not responsible for any errors or omissions in this version of
the manuscript or any version derived from i
Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade
Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a
range of toroidal mode numbers over a wide region of low to medium
collisionality discharges. The ELM energy loss and peak heat loads at the
divertor targets have been reduced. The ELM mitigation phase is typically
associated with a drop in plasma density and overall stored energy. In one
particular scenario on MAST, by carefully adjusting the fuelling it has been
possible to counteract the drop in density and to produce plasmas with
mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in
pedestal height and confined energy. While the applied resonant magnetic
perturbation field can be a good indicator for the onset of ELM mitigation on
MAST and AUG there are some cases where this is not the case and which clearly
emphasise the need to take into account the plasma response to the applied
perturbations. The plasma response calculations show that the increase in ELM
frequency is correlated with the size of the edge peeling-tearing like response
of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited
version of an article submitted for publication in Nuclear Fusion. IoP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from i
Solitary magnetic perturbations at the ELM onset
Edge localised modes (ELMs) allow maintaining sufficient purity of tokamak
H-mode plasmas and thus enable stationary H-mode. On the other hand in a future
device ELMs may cause divertor power flux densities far in excess of tolerable
material limits. The size of the energy loss per ELM is determined by
saturation effects in the non-linear phase of the ELM, which at present is
hardly understood. Solitary magnetic perturbations (SMPs) are identified as
dominant features in the radial magnetic fluctuations below 100kHz. They are
typically observed close (+-0.1ms) to the onset of pedestal erosion. SMPs are
field aligned structures rotating in the electron diamagnetic drift direction
with perpendicular velocities of about 10km/s. A comparison of perpendicular
velocities suggests that the perturbation evoking SMPs is located at or inside
the separatrix. Analysis of very pronounced examples showed that the number of
peaks per toroidal turn is 1 or 2, which is clearly lower than corresponding
numbers in linear stability calculations. In combination with strong peaking of
the magnetic signals this results in a solitary appearance resembling modes
like palm tree modes, edge snakes or outer modes. This behavior has been
quantified as solitariness and correlated to main plasma parameters. SMPs may
be considered as a signature of the non-linear ELM-phase originating at the
separatrix or further inside. Thus they provide a handle to investigate the
transition from linear to non-linear ELM phase. By comparison with data from
gas puff imaging processes in the non-linear phase at or inside the separatrix
and in the scrape-off-layer (SOL) can be correlated. A connection between the
passing of an SMP and the onset of radial filament propagation has been found.
Eventually the findings related to SMPs may contribute to a future quantitative
understanding of the non-linear ELM evolution.Comment: submitted to Nuclear Fusio
Helium exhaust experiments on JET with Type I ELMs in H-mode and with type III ELMs in ITB discharges
An analysis of helium exhaust experiments on JET in the MkII-GB divertor configuration is presented. Helium is pumped by applying an argon frost layer on the divertor cryo pump. Measurement of the helium retention time, tau(He)(*),, is performed in two ways: by the introduction of helium in gas puffs and measurement of the subsequent decay time constant of the helium content, tau(He)(d*); and by helium beam injection and measurement of the helium replacement time, tau(He)(r*). In ELMy H-mode, with plasma configuration optimized for pumping, tau(He)(d*) approximate to 7.2 x tau(E)(th) is achieved, where tau(E)(th) is the thermal energy replacement time. For quasi-steady internal transport barrier (ITB) discharges, the achieved tau(He)(r*) approximate to 4.1 x tau(E)(th) is significantly lower. The achieved helium recycling coefficient, confirmed by an independent measurement to be R-eff approximate to 0.91, is the same in both scenarios. None of the discharges are dominated by core confinement. The difference in tau(He)(*)/tau(E)(th) is instead due to the confinement properties of the edge plasma, which is characterized by Type I ELMs for the H-mode discharges studied, and Type III ELMs for the quasi-steady ITB discharges. This difference is quantified by an independent measurement of the ratio of the helium replacement time with a helium edge source to the energy confinement time
Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET
Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
- …
