257 research outputs found

    Outcomes following laminoplasty or laminectomy and fusion in patients with myelopathy caused by ossification of the posterior longitudinal ligament: A systematic review

    Get PDF
    Study Design Systematic review. Objective To compare laminoplasty versus laminectomy and fusion in patients with cervical myelopathy caused by OPLL. Methods A systematic review was conducted using PubMed/Medline, Cochrane database, and Google scholar of articles. Only comparative studies in humans were included. Studies involving cervical trauma/fracture, infection, and tumor were excluded. Results Of 157 citations initially analyzed, 4 studies ultimately met our inclusion criteria: one class of evidence (CoE) II prospective cohort study and three CoE III retrospective cohort studies. The prospective cohort study found no significant difference between laminoplasty and laminectomy and fusion in the recovery rate from myelopathy. One CoE III retrospective cohort study reported a significantly higher recovery rate following laminoplasty. Another CoE III retrospective cohort study reported a significantly higher recovery rate in the laminectomy and fusion group. One CoE II prospective cohort study and one CoE III retrospective cohort study found no significant difference in pain improvement between patients treated with laminoplasty versus patients treated with laminectomy and fusion. All four studies reported a higher incidence of C5 palsy following laminectomy and fusion than laminoplasty. One CoE II prospective cohort and one CoE III retrospective cohort reported that there was no significant difference in axial neck pain between the two procedures. One CoE III retrospective cohort study suggested that there was no significant difference between groups in OPLL progression. Conclusion Data from four comparative studies was not sufficient to support the superiority of laminoplasty or laminectomy and fusion in treating cervical myelopathy caused by OPLL

    Thermodynamics as an alternative foundation for zero-temperature density functional theory and spin density functional theory

    Full text link
    Thermodynamics provides a transparent definition of the free energy of density functional theory (DFT), and of its derivatives - the potentials, at finite temperatures T. By taking the T to 0 limit, it is shown here that both DFT and spin-dependent DFT (for ground states) suffer from precisely the same benign ambiguities: (a) charge and spin quantization lead to "up to a constant" indeterminacies in the potential and the magnetic field respectively, and (b) the potential in empty subspaces is undetermined but irrelevant. Surprisingly, these simple facts were inaccessible within the standard formulation, leading to recent discussions of apparent difficulties within spin-DFT.Comment: RevTeX, to appear in Phys. Rev.

    Improved tensor-product expansions for the two-particle density matrix

    Full text link
    We present a new density-matrix functional within the recently introduced framework for tensor-product expansions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix functionals, becoming very accurate for high densities and outperforming Hartree-Fock at metallic valence electron densities. For isolated atoms and ions, it is on a par with previous density-matrix functionals and generalized gradient approximations to density-functional theory. We also present analytic results for the correlation energy in the low density limit of the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure

    Density-matrix functional theory of the Hubbard model: An exact numerical study

    Full text link
    A density functional theory for many-body lattice models is considered in which the single-particle density matrix is the basic variable. Eigenvalue equations are derived for solving Levy's constrained search of the interaction energy functional W, which is expressed as the sum of Hartree-Fock energy and the correlation energy E_C. Exact results are obtained for E_C of the Hubbard model on various periodic lattices. The functional dependence of E_C is analyzed by varying the number of sites, band filling and lattice structure. The infinite one-dimensional chain and one-, two-, or three-dimensional finite clusters with periodic boundary conditions are considered. The properties of E_C are discussed in the limits of weak and strong electronic correlations, as well as in the crossover region. Using an appropriate scaling we observe a pseudo-universal behavior which suggests that the correlation energy of extended systems could be obtained quite accurately from finite cluster calculations. Finally, the behavior of E_C for repulsive (U>0) and attractive (U<0) interactions are contrasted.Comment: Phys. Rev. B (1999), in pres

    Interaction energy functional for lattice density functional theory: Applications to one-, two- and three-dimensional Hubbard models

    Full text link
    The Hubbard model is investigated in the framework of lattice density functional theory (LDFT). The single-particle density matrix γij\gamma_{ij} with respect the lattice sites is considered as the basic variable of the many-body problem. A new approximation to the interaction-energy functional W[γ]W[\gamma] is proposed which is based on its scaling properties and which recovers exactly the limit of strong electron correlations at half-band filling. In this way, a more accurate description of WW is obtained throughout the domain of representability of γij\gamma_{ij}, including the crossover from weak to strong correlations. As examples of applications results are given for the ground-state energy, charge-excitation gap, and charge susceptibility of the Hubbard model in one-, two-, and three-dimensional lattices. The performance of the method is demonstrated by comparison with available exact solutions, with numerical calculations, and with LDFT using a simpler dimer ansatz for WW. Goals and limitations of the different approximations are discussed.Comment: 25 pages and 8 figures, submitted to Phys. Rev.

    Long‐term monitoring and experimental manipulation of a Chihuahuan desert ecosystem near Portal, Arizona (1977–2013)

    Full text link
    Desert ecosystems have long served as model systems in the study of ecological concepts (e.g., competition, resource pulses, top‐down/bottom‐up dynamics). However, the inherent variability of resource availability in deserts, and hence consumer dynamics, can also make them challenging ecosystems to understand. Study of a Chihuahuan desert ecosystem near Portal, Arizona began in 1977. At this site, 24 experimental plots were established and divided among controls and experimental manipulations. Experimental manipulations over the years include removal of all or some rodent species, all or some ants, seed additions, and various alterations of the annual plant community. This dataset includes data previously available through an older data publication and adds 11 years of data. It also includes additional ant and weather data not previously available. These data have been used in a variety of publications documenting the effects of the experimental manipulations as well as the response of populations and communities to long‐term changes in climate and habitat. Sampling is ongoing and additional data will be published in the future.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146431/1/ecy1360.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146431/2/ecy1360_am.pd

    The influence of defects on magnetic properties of fcc-Pu

    Full text link
    The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecular dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in ff-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.Comment: 13 pages, 4 figure

    Thermal Density Functional Theory in Context

    Full text link
    This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in Warm Dense Matter", F. Graziani et al. ed

    Analytic structure factors and pair-correlation functions for the unpolarized homogeneous electron gas

    Full text link
    We propose a simple and accurate model for the electron static structure factors (and corresponding pair-correlation functions) of the 3D unpolarized homogeneous electron gas. Our spin-resolved pair-correlation function is built up with a combination of analytic constraints and fitting procedures to quantum Monte Carlo data, and, in comparison to previous attempts (i) fulfills more known integral and differential properties of the exact pair-correlation function, (ii) is analytic both in real and in reciprocal space, and (iii) accurately interpolates the newest, extensive diffusion-Monte Carlo data of Ortiz, Harris and Ballone [Phys. Rev. Lett. 82, 5317 (1999)]. This can be of interest for the study of electron correlations of real materials and for the construction of new exchange and correlation energy density functionals.Comment: 14 pages, 5 figures, submitted to Phys. Rev.
    corecore