489 research outputs found

    Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    Full text link
    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers

    Honey Production with Remote Smart Monitoring System

    Get PDF
    The innovative technologies of precision agriculture can be applied to beekeeping, a very important sector both from an environmental and production point of view. Bees are responsible, through pollination, for the reproduction of numerous plants guaranteeing biodiversity and providing a final product, honey, highly energetic and with high health properties. Today, sensors applied to the hives can be used to obtain information on the colony phenology in the field, disturbing them as little as possible, allowing the construction of forecast models to control their health state and production increase. The Department of Agricultural, Food and Forest Sciences of the University of Palermo developed a WNS-type system for continuously monitoring and controlling the main environmental factors, both inside and outside the hive, in order to evaluate their influence on daily honey production. The novel system allows to identify any critical points in honey production recording environmental, sound and production data and real time transmitting them to the operators, accessing a specifically created web interface. The results of the study represent the basis for a precision hive management model that can be applied in different environmental conditions to optimize honey production

    Application of Precision Agriculture for the Sustainable Management of Fertilization in Olive Groves

    Get PDF
    Olive tree growing (Olea europaea L.) has considerably increased in the last decades, as has the consumption of extra virgin olive oil in the world. Precision agriculture is increasingly being applied in olive orchards as a new method to manage agronomic variability with the aim of providing individual plants with the right input amount, limiting waste or excess. The objective of this study was to develop a methodology on a GIS platform using GEOBIA algorithms in order to build prescription maps for variable rate (VRT) nitrogen fertilizers application in an olive orchard. The fertilization plan was determined for each tree by applying its own nitrogen balance, taking into account the variability of nitrogen in soil, leaf, production, and actual biometric and spectral conditions. Each olive tree was georeferenced using the S7-G Stonex instrument with real-time kinematic RTK positioning correction and the trunk cross section area (TCSA) was measured. Soil and leaves were sampled to study nutrient variability. Soil and plant samples were analyzed for all major physical and chemical properties. Spectral data were obtained using a multispectral camera (DJI multispectral) carried by an unmanned aerial vehicle (UAV) platform (DJI Phantom4). The biometric characteristics of the plants were extracted from the achieved normalized vegetation index (NDVI) map. The obtained prescription map can be used for variable rate fertilization with a tractor and fertilizer spreader connected via the ISOBUS system. Using the proposed methodology, the variable rate application of nitrogen fertilizer resulted in a 31% reduction in the amount to be applied in the olive orchard compared to the standard dose

    Effects of the 6th September 2002 earthquake: damage amplification in the south-eastern sector of Palermo explained by GIS technology

    Get PDF
    During the 6th September 2002 earthquake the highest damage level in Palermo was observed in the SE sector. This is a recent urbanization area where reinforced concrete structures predominate. A detailed analysis of soil properties in Palermo was carried out by City-GIS to investigate a possible role of nearsurface geology on earthquake effects. City-GIS is a tool dedicated to natural hazard evaluation in urban areas. The availability of high density of well log data (stratigraphic and geotechnical) allowed a realistic modeling of surface geology and physical-mechanical properties that control the seismic response. In wide zones of the above mentioned sector of Palermo, outcropping terrains are composed of thin calcarenite layers, lying above remarkably thick siltyclayey sands that overlay the Numidian Flysch, commonly considered the bedrock of Quaternary sediments. Since silty-clayey sands feature greater deformability properties (Young's modulus) and smaller resistance properties (undrained cohesion and shear resistance angle) than Numidian Flysch, these zones of the SE sector exhibit high values of the acoustic impedance contrast. Moreover, a quite wide portion of the study area, crossed by the Oreto River, is characterized by very thick alluvial deposits. Here, the significant lateral variations of the lithostratigraphic geometry may be an additional cause of strong site effects

    Macroseismic effects highlight site response in Rome and its geological signature

    Get PDF
    A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an on-line macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in the light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a sub-regional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found. Moreover, the detailed scale of investigation has permitted us to find a correlation between seismic amplification in recent alluvial settings and subsiding zones, and between heard seismic sound and Tiber alluvial sediments

    Microtremor Measurements in the City of Palermo, Italy: Analysis of the Correlation between Local Geology and Damage

    Get PDF
    This study presents the results of 90 seismic ambient noise measurements in Palermo, the main city of Sicily (Italy). The dataset has been processed using the horizontal-to-vertical spectral ratio (HVNSR) technique and interpreted in terms of local geology, which is characterized by the presence of alluvial sediments of two riverbeds masked by urbanization since the seventeenth century. HVNSRs show significant variations in the study area: when the transition stiff to soft is crossed, a typical spectral peak appears in the HVNSRs, mostly in the frequency band 1–2 Hz, and exceeding a factor of 3 in amplitude. Using available information on subsurface geological structure, we compute theoretical 1D and 2D transfer functions. The resonance frequencies of soft soils obtained by HVNSR are well reproduced by the fundamental frequencies from numerical modeling. The distribution of frequency peaks of HVNSR and their amplitudes are also compared with the local damage caused by historical earthquakes. Previous studies demonstrated that damage variations in Palermo were controlled more by near-surface geology than building vulnerability. A uniform vulnerability is an ideal condition to test statistical methods and their capability in seeking correlation between HVNSR and potential damage due to local geological conditions. We apply two well-established multivariate statistical methodologies (factor analysis and canonical correlation) to the HVNSR dataset and macroseismic data (damage grades of the European macroseismic scale). Through these analyses we quantify the significance of the correlation between the HVNSR peak in the low-medium frequency range (0.5–3 Hz) and the occurrence of the highest damage grades. This approach allows us (1) to estimate the threshold value in the resulting linear combination of the HVNSR amplitudes, which separates zones of light damage from zones of significant damage, and therefore (2) to improve the spatial definition of potentially high hazard zones through a denser grid of microtremor measurements

    YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress

    Get PDF
    The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress
    • …
    corecore