1 research outputs found

    Effects of the thermodynamic conditions on the acoustic signature of bubble nucleation in superheated liquids used in dark matter search experiments

    Full text link
    [EN] In the framework of the search for dark matter in the form of WIMPs using superheated liquids, a study is conducted to establish a computational procedure aimed at determining how the thermodynamic conditions kept inside a particle detector affect the acoustic signal produced by bubble nucleation. It is found that the acoustic energy injected into the liquid by the growing vapour bubble increases as the liquid pressure is decreased and the superheat degree is increased, the former effect being crucial for the generation of a well-intelligible signal. A good agreement is met between the results of the present study and some experimental data available in the literature for the amplitude of the acoustic signal. Additionally, the higher loudness of the alpha-decay events compared with those arising from neutron-induced nuclear recoils is described in terms of multiple nucleations.The authors are grateful to Walter Fulgione for the valuable discussions and suggestions and for his help in reviewing the manuscript.Ardid Ramírez, M.; Baschirotto, A.; Burgio, N.; Corcione, M.; Cretara, L.; De Matteis, L.; Felis-Enguix, I.... (2019). Effects of the thermodynamic conditions on the acoustic signature of bubble nucleation in superheated liquids used in dark matter search experiments. The European Physical Journal C. 79(11):1-9. https://doi.org/10.1140/epjc/s10052-019-7485-xS197911W.J. Bolte et al., Nucl. Instr. Meth. Phys. Res. A 577, 569–573 (2007)E. Behnke et al., Astropart. Phys. 90, 85–92 (2017)M. Felizardo et al., E3S Web Conf. 12, 03002 (2016)E. Behnke et al., Phys. Rev. D 88, 021101 (2013)C. Amole et al., Phys. Rev. Lett. 118, 251301 (2017)A. Antonicci et al., Eur. Phys. J. C 77, 752 (2017)D.A. Glaser, Phys. Rev. 87, 655 (1952)F. Seitz, Phys. Fluids 1, 2–13 (1958)E. Behnke et al., Phys. Rev. Lett. 106, 021303 (2011)D.A. Glaser, D.C. Rahm, Phys. Rev. 97, 474–479 (1955)Yu.N. Martynyuk, N.S. Smirnova, Sov. Phys. Acoust. 37, 376–378 (1991)F. Aubin et al., New J. Phys. 10, 103017 (2008)M. Felizardo et al., Nucl. Instr. Meth. Phys. Res. A 589, 72–84 (2008)P.K. Mondal, B.K. Chatterjee, Phys. Lett. A 375, 237–244 (2011)S. Archambault et al., New J. Phys. 13, 043006 (2011)C. Amole et al., Phys. Rev. Lett. 114, 231302 (2015)R. Sarkar et al., Phys. Lett. A 381, 2531–2537 (2017)I.A. Pless, R.J. Plano, Rev. Sci. Instr. 27, 935–937 (1956)D.V. Bugg, Progr. Nucl. Phys. 7, 2–52 (1959)A. Norman, P. Spiegler, Nucl. Sci. Eng. 16, 213–217 (1963)A.G. Tenner, Nucl. Instr. Meth. 22, 1–42 (1963)Ch. Peyrou, In Bubble and Spark Chambers (Academic Press, New York, 1967)C.R. Bell et al., Nucl. Sci. Eng. 53, 458–465 (1974)G. Bruno et al., Eur. Phys. J. C 79, 183 (2019)B.M. Dorofeev, V.I. Volkova, High Temp. 43, 620–627 (2005)L.D. Landau, E.M. Lifshitz, Fluid Mechanics. Course of Theoretical Physics, vol 6, 2nd edn. (Butterworth-Heinemann, Kidlington, Oxford, 1987)Y.Y. Sun, B.T. Chu, R.E. Apfel, J. Comp. Phys. 103, 126–140 (1992)M.S. Plesset, S.A. Zwick, J. Appl. Phys. 25, 493–500 (1954)L.E. Scriven, Chem. Eng. Sci. 10, 1–13 (1959)H.S. Lee, H. Merte, Int. J. Heat Mass Transf. 39, 2427–2447 (1996)A.J. Robinson, R.L. Judd, Int. J. Heat Mass Transf. 47, 5101–5113 (2004)F. d’Errico, Rad. Prot. Dos. 84, 55–62 (1999)B.B. Mikic, W.M. Rohsenow, P. Griffith, Int. J. Heat Mass Transf. 13, 657–666 (1970)P.J. Linstrom, W.G. Mallard (eds.) NIST Chemistry WebBook, NIST-SRD 69 (National Institute of Standards and Technology, Gaithersburg, MD). https://doi.org/10.18434/T4D303M. Barnabé-Heider et al., Nucl. Instr. Meth. Phys. Res. A 555, 184–204 (2005)D.V. Jordan et al., Appl. Rad. Isot. 63, 645–653 (2005
    corecore