29 research outputs found

    Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-ray Pulsars

    Full text link
    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We have analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg2^2 region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb-Scargle and epoch folding techniques, we have detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covers 11 other pulsars with no clear sign of periodic modulation. The 0.5-8 keV X-ray luminosity (LXL_X) of the pulsars ranges from 103410^{34} to 103710^{37} erg s−1^{-1} at 60 kpc. All the Chandra sources with LXL_X ≳4×1035\gtrsim 4 \times 10^{35} erg s−1^{-1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP~8.02 can be fitted by an absorbed power-law model with a photon index of Γ\Gamma ≲\lesssim 1.5. The X-ray spectrum of the known magnetar SXP~8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP~51.0, SXP~214 and SXP~701 are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variation during pulsation cycle: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation.Comment: 24 pages, 19 figures, 11 tables, submitted to Ap

    Addressing Outstanding Problems in the Physics of Massive Stars with the Line Emission Mapper X-ray Probe

    Full text link
    We present some of the salient aspects of the scientific motivation for high resolution soft X-ray spectroscopy of early-type stars with the Line Emission Mapper X-ray Probe. The major strength of {\it LEM} for hot star physics is its large effective area, aided by the inherent energy resolution of its microcalorimeter that readily achieves resolving powers of 1000 and obviates the need for relatively inefficient dispersive optical elements. This increased sensitivity enables much fainter and more distant high mass stars to be observed than are accessible with present-day facilities, greatly increasing the pool of potential targets. For brighter sources, the sensitivity opens up time domain studies, wherein sufficient signal can be garnered in short order and exposure times, probing source variations on ks timescales. We argue that these capabilities of {\it LEM} will yield breakthroughs in all types of hot star systems, from understanding single OB and WR star winds and how they vary with metallicity, to probing the shocks of colliding wind systems and the magnetically channeled winds of magnetic OB stars. {\it LEM} will also study the energetics of WR star bubbles and feedback from their powerful pre-SN stellar winds.Comment: A Line Emission Mapper White Pape

    On the Nature of the X-ray Emission from the Ultraluminous X-ray Source, M33 X-8: New Constraints from NuSTAR and XMM-Newton

    Full text link
    We present nearly simultaneous NuSTAR and XMM-Newton observations of the nearby (832 kpc) ultraluminous X-ray source (ULX) M33 X-8. M33 X-8 has a 0.3-10 keV luminosity of LX ~ 1.4 x 10^39 erg/s, near the boundary of the "ultraluminous" classification, making it an important source for understanding the link between typical Galactic X-ray binaries and ULXs. Past studies have shown that the 0.3-10 keV spectrum of X-8 can be characterized using an advection-dominated accretion disk model. We find that when fitting to our NuSTAR and XMM-Newton observations, an additional high-energy (>10 keV) Comptonization component is required, which allows us to rule out single advection-dominated disk and classical sub-Eddington models. With our new constraints, we analyze XMM-Newton data taken over the last 17 years to show that small (~30%) variations in the 0.3-10 keV flux of M33 X-8 result in spectral changes similar to those observed for other ULXs. The two most likely phenomenological scenarios suggested by the data are degenerate in terms of constraining the nature of the accreting compact object (i.e., black hole versus neutron star). We further present a search for pulsations using our suite of data; however, no clear pulsations are detected. Future observations designed to observe M33 X-8 at different flux levels across the full 0.3-30 keV range would significantly improve our constraints on the nature of this important source.Comment: Accepted for publication in ApJ (15 pages, 4 tables, 6 figures

    SXP214, an X-ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion

    Get PDF
    Located in the Small Magellanic Cloud (SMC), SXP214 is an X-ray pulsar in a high mass X-ray binary system with a Be-star companion. A recent survey of the SMC under a Chandra X-ray Visionary program found the source in a transition when the X-ray flux was on a steady rise. The Lomb-Scargle periodogram revealed a pulse period of 211.49 +/- 0.42 s, which is significantly (>5sigma) shorter than the previous measurements with XMM-Newton and RXTE. This implies that the system has gone through sudden spin-up episodes recently. The pulse profile shows a sharp eclipse-like feature with a modulation amplitude of >95%. The linear rise of the observed X-ray luminosity from <~2x to 7x10^35 erg s^-1 is correlated with steady softening of the X-ray spectrum, which can be described by the changes in the local absorption from N_H ~ 10^24 to <~10^20 cm^-2 for an absorbed power-law model. The soft X-ray emission below 2 keV was absent in the early part of the observation when only the pulsating hard X-ray component was observed, whereas at later times both soft and hard X-ray components were observed pulsating. A likely explanation is that the neutron star was initially hidden in the circumstellar disk of the companion, and later came out of the disk with the accreted material that continued fueling the observed pulsation.Comment: 8 pages, 4 figures, 1 table, accepted for publication in Ap
    corecore