10 research outputs found

    Light-Switchable Membrane Permeability in Giant Unilamellar Vesicles

    Get PDF
    : In this work, giant unilamellar vesicles (GUVs) were synthesized by blending the natural phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with a photoswitchable amphiphile (1) that undergoes photoisomerization upon irradiation with UV-A (E to Z) and blue (Z to E) light. The mixed vesicles showed marked changes in behavior in response to UV light, including changes in morphology and the opening of pores. The fine control of membrane permeability with consequent cargo release could be attained by modulating either the UV irradiation intensity or the membrane composition. As a proof of concept, the photocontrolled release of sucrose from mixed GUVs is demonstrated using microscopy (phase contrast) and confocal studies. The permeability of the GUVs to sucrose could be increased to ~4 × 10-2 μm/s when the system was illuminated by UV light. With respect to previously reported systems (entirely composed of synthetic amphiphiles), our findings demonstrate the potential of photosensitive GUVs that are mainly composed of natural lipids to be used in medical and biomedical applications, such as targeted drug delivery and localized topical treatments

    Non-autonomous zinc–methylimidazole oscillator and the formation of layered precipitation structures in a hydrogel

    Get PDF
    Oscillations are one of the intrinsic features of many animate and inanimate systems. The oscillations manifest in the temporal periodic change of one or several physical quantities describing the systems. In chemistry and biology, this physical quantity is the concentration of the chemical species. In most chemical oscillatory systems operating in batch or open reactors, the oscillations persist because of the sophisticated chemical reaction networks incorporating autocatalysis and negative feedback. However, similar oscillations can be generated by periodically changing the environment providing non-autonomous oscillatory systems. Here we present a new strategy for designing a non-autonomous chemical oscillatory system for the zinc–methylimidazole. The oscillations manifested in the periodic change of the turbidity utilizing the precipitation reaction between the zinc ions and 2-methylimidazole (2-met) followed by a partial dissolution of the formed precipitate due to a synergetic effect governed by the ratio of the 2-met in the system. Extending our idea spatiotemporally, we also show that these precipitation and dissolution phenomena can be utilized to create layered precipitation structures in a solid agarose hydrogel

    Periodic Precipitation of Zeolitic Imidazolate Frameworks in a Gelled Medium

    Get PDF
    Formation of spatially periodic patterns is a ubiquitous process in nature and man-made systems. Periodic precipitation is the oldest type of pattern formation, in which the formed colloid particles are self-assembled into a sequence of spatially separated precipitation zones in solid hydrogels. Chemical systems exhibiting periodic precipitation mostly comprise oppositely charged inorganic ions. Here, we present a new sub-group of this phenomenon driven by the diffusion and reaction of several transition metal cations (Zn2+, Co2+, Cd2+, Cu2+, Fe2+, Mn2+, and Ni2+) with an organic linker (2-methylimidazole) producing periodic precipitation of zeolitic imidazolate frameworks. In some cases, the formed crystals reached the size of ∼50 μm showing that a gel matrix can provide optimal conditions for nucleation and crystal growth. We investigated the effect of the gel concentration and solvent composition on the morphology of the pattern. To support the experimental observations, we developed a reaction–diffusion model, which qualitatively describes the spatially periodic pattern formation

    Interfacial Mass Transfer in Trichloroethylene/Surfactants/ Water Systems: Implications for Remediation Strategies

    No full text
    The fate of dense non-aqueous phase liquids (DNAPLs) in the environment and the consequential remediation problems have been intensively studied over the last 50 years. However, a scarce literature is present about the mass transfer at the DNAPL/water interface. In this paper, we present a fast method for the evaluation of the mass transfer performance of a surfactant that can easily be employed to support an effective choice for the so-called enhanced remediation strategies. We developed a lab-scale experimental system modelled by means of simple ordinary differential equations to calculate the mass transfer coefficient (K) of trichloroethylene, chosen as representative DNAPL, in the presence and in the absence of two ethoxylated alcohols belonging to the general class of Synperonic surfactants. Our findings revealed that it exists an optimal surfactant concentration range, where K increases up to 40% with respect to pure water

    Interfacial Mass Transfer in Trichloroethylene/Surfactants/ Water Systems: Implications for Remediation Strategies

    Get PDF
    The fate of dense non-aqueous phase liquids (DNAPLs) in the environment and the consequential remediation problems have been intensively studied over the last 50 years. However, a scarce literature is present about the mass transfer at the DNAPL/water interface. In this paper, we present a fast method for the evaluation of the mass transfer performance of a surfactant that can easily be employed to support an effective choice for the so-called enhanced remediation strategies. We developed a lab-scale experimental system modelled by means of simple ordinary differential equations to calculate the mass transfer coefficient (K) of trichloroethylene, chosen as representative DNAPL, in the presence and in the absence of two ethoxylated alcohols belonging to the general class of Synperonic surfactants. Our findings revealed that it exists an optimal surfactant concentration range, where K increases up to 40% with respect to pure water

    Hydrodynamically-enhanced transfer of dense non-aqueous phase liquids into an aqueous reservoir

    No full text
    The use of surfactants represents a viable strategy to boost the removal yield of Dense Non-Aqueous Phase Liquids (DNAPLs) from groundwater and to shorten the operational timing of the remediation process. Surfactants, in general, help in reducing the interfacial tension at the DNAPL/water interface and enhance the solubility of the pollutant in the water phase through the formation of dispersed systems, such as micelles and emulsions. In this paper, we show that a suitable choice of a surfactant, in this case belonging to the bio-degradable class of ethoxylated alcohols, allows for the formation of hydrodynamic interfacial instabilities that further enhances the dissolution rate of the organic pollutant into the water phase. In a stratified configuration (denser organic phase at the bottom and lighter water phase on top), the instabilities appear as upward -pointing fingers that originate from the inversion of the local density at the interface. This inversion stems from the synergetic coupling of two effects promoted by the ethoxylated surfactant: i) the enhanced co -solubility of the DNAPL into the water (and viceversa), and (ii) the differential diffusion of the DNAPL and the surfactant in the aqueous phase. By dissolving into the DNAPL, the surfactant also reduces locally the surface tension at the liquid-liquid interface, thereby inducing transversal Marangoni flows. In our work, we carefully evaluated the effects of the concentration of different surfactants (two different ethoxylated alcohols, sodium dodecylsulphate, cetyltrimethyl ammonium bromide, N-tetradecyl-N, N-dimethylamine oxide and bis(2-ethylhexyl) sulfosuccinate sodium salt) on the onset of the instabilities in 3 different DNAPLs/water stratifications, namely chloroform, trichloroethylene and tetrachloroethylene, with a special emphasis on the trichloroethylene/water system. By means of a theoretical model and nonlinear simulations, supported by surface tension, density and diffusivity measurements, we could provide a solid explanation to the observed phenomena and we found that the type of the dispersed system, the solubility of the DNAPL into the water phase, the solubility of the surfactant in the organic phase, as well as the relative diffusion and density of the surfactant and the DNAPL in the aqueous phase, are all key parameters for the onset of the instabilities. These results can be exploited in the most common remediation techniques

    Non-autonomous zinc–methylimidazole oscillator and the formation of layered precipitation structures in a hydrogel

    Get PDF
    Abstract Oscillations are one of the intrinsic features of many animate and inanimate systems. The oscillations manifest in the temporal periodic change of one or several physical quantities describing the systems. In chemistry and biology, this physical quantity is the concentration of the chemical species. In most chemical oscillatory systems operating in batch or open reactors, the oscillations persist because of the sophisticated chemical reaction networks incorporating autocatalysis and negative feedback. However, similar oscillations can be generated by periodically changing the environment providing non-autonomous oscillatory systems. Here we present a new strategy for designing a non-autonomous chemical oscillatory system for the zinc–methylimidazole. The oscillations manifested in the periodic change of the turbidity utilizing the precipitation reaction between the zinc ions and 2-methylimidazole (2-met) followed by a partial dissolution of the formed precipitate due to a synergetic effect governed by the ratio of the 2-met in the system. Extending our idea spatiotemporally, we also show that these precipitation and dissolution phenomena can be utilized to create layered precipitation structures in a solid agarose hydrogel

    Light-Switchable Membrane Permeability in Giant Unilamellar Vesicles

    Get PDF
    In this work, giant unilamellar vesicles (GUVs) were synthesized by blending the natural phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with a photoswitchable amphiphile (1) that undergoes photoisomerization upon irradiation with UV-A (E to Z) and blue (Z to E) light. The mixed vesicles showed marked changes in behavior in response to UV light, including changes in morphology and the opening of pores. The fine control of membrane permeability with consequent cargo release could be attained by modulating either the UV irradiation intensity or the membrane composition. As a proof of concept, the photocontrolled release of sucrose from mixed GUVs is demonstrated using microscopy (phase contrast) and confocal studies. The permeability of the GUVs to sucrose could be increased to ~4 × 10–2 μm/s when the system was illuminated by UV light. With respect to previously reported systems (entirely composed of synthetic amphiphiles), our findings demonstrate the potential of photosensitive GUVs that are mainly composed of natural lipids to be used in medical and biomedical applications, such as targeted drug delivery and localized topical treatments

    Synthesis of Zeolitic Imidazolate Framework‑8 Using Glycerol Carbonate

    Get PDF
    Glycerolcarbonate can be used as a green solvent for synthesizingzeolitic imidazole framework-8, which can be also recycled for severalcycles.In this study, we show that glycerol carbonate (GlyC),a bio-basedderivative of glycerol, can be used as a suitable green solvent forthe synthesis of metal-organic frameworks (MOFs). In particular,a zinc-based zeolitic imidazolate framework-8 (ZIF-8) was synthesizedby exploring several different experimental conditions (in terms oftemperature, reaction time, and reactants' concentrations)to find that the yield of the reaction and the quality of the products,measured in terms of crystallinity, surface area, and porosity, werein line with those obtained in the most commonly (non-green) usedsolvents. GlyC was also found to be reusable for several cycles, maintainingthe same original quality as a solvent for the synthesis. Finally,some indicators for the assessment of the greenness of a process (E-factorand PMI) revealed a milder environmental impact of GlyC with respectto other solvents
    corecore