4,942 research outputs found

    Evaluation of different bowel preparations for small bowel capsule endoscopy: a prospective, randomized, controlled study

    Get PDF
    To obtain an adequate view of the whole small intestine during capsule endoscopy (CE) a clear liquid diet and overnight fasting is recommended. However, intestinal content can hamper vision in spite of these measures. Our aim was to evaluate tolerance and degree of intestinal cleanliness during CE following three types of bowel preparation. PATIENTS AND METHODS: This was a prospective, multicenter, randomized, controlled study. Two-hundred ninety-one patients underwent one of the following preparations: 4 L of clear liquids (CL) (group A; 92 patients); 90 mL of aqueous sodium phosphate (group B; 89 patients); or 4 L of a polyethylene glycol electrolyte solution (group C; 92 patients). The degree of cleanliness of the small bowel was classified by blinded examiners according to four categories (excellent, good, fair or poor). The degree of patient satisfaction, gastric and small bowel transit times, and diagnostic yield were measured. RESULTS: The degree of cleanliness did not differ significantly between the groups (P = 0.496). Interobserver concordance was fair (k = 0.38). No significant differences were detected between the diagnostic yields of the CE (P = 0.601). Gastric transit time was 35.7 +/- 3.7 min (group A), 46.1 +/- 8.6 min (group B) and 34.6 +/- 5.0 min (group C) (P = 0.417). Small-intestinal transit time was 276.9 +/- 10.7 min (group A), 249.7 +/- 13.1 min (group B) and 245.6 +/- 11.6 min (group C) (P = 0.120). CL was the best tolerated preparation. Compliance with the bowel preparation regimen was lowest in group C (P = 0.008). CONCLUSIONS: A clear liquid diet and overnight fasting is sufficient to achieve an adequate level of cleanliness and is better tolerated by patients than other forms of preparation

    Beyond property: Rural politics and land-use change in the Colombian sugarcane landscape

    Full text link
    Analysing the sugarcane landscape in the flat valley of the Cauca River (Colombia) reveals that agricultural industrialization in the region required the concentration of land use by regional industrialists and the corresponding exclusion of landowners and poor peasants from territorial decision-making processes. The analytical lens used in this article, based on the use and control over land and land-based natural commons, allows for the characterization of three periods in a non-linear process of articulation and dispute between poor peasant and capitalist agents in the expansion of the sugarcane monoculture during the 20th century. The different constellations of social agents, governmental nexus, and capital enclosures have enacted through mechanisms that, beyond concentrating land property, have managed to deprive rural ethnic communities from their cultural and environmental heritage, traditional economies, and possible futures.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151270/1/joac12332_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151270/2/joac12332.pd

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore