140 research outputs found

    Pathogen Populations Evolve to Greater Race Complexity in Agricultural Systems – Evidence from Analysis of Rhynchosporium secalis Virulence Data

    Get PDF
    Fitness cost associated with pathogens carrying unnecessary virulence alleles is the fundamental assumption for preventing the emergence of complex races in plant pathogen populations but this hypothesis has rarely been tested empirically on a temporal and spatial scale which is sufficient to distinguish evolutionary signals from experimental error. We analyzed virulence characteristics of ∼1000 isolates of the barley pathogen Rhynchosporium secalis collected from different parts of the United Kingdom between 1984 and 2005. We found a gradual increase in race complexity over time with a significant correlation between sampling date and race complexity of the pathogen (r20 = 0.71, p = 0.0002) and an average loss of 0.1 avirulence alleles (corresponding to an average gain of 0.1 virulence alleles) each year. We also found a positive and significant correlation between barley cultivar diversity and R. secalis virulence variation. The conditions assumed to favour complex races were not present in the United Kingdom and we hypothesize that the increase in race complexity is attributable to the combination of natural selection and genetic drift. Host resistance selects for corresponding virulence alleles to fixation or dominant frequency. Because of the weak fitness penalty of carrying the unnecessary virulence alleles, genetic drift associated with other evolutionary forces such as hitch-hiking maintains the frequency of the dominant virulence alleles even after the corresponding resistance factors cease to be used

    Field pathogenomics reveals the emergence of a diverse wheat yellow rust population

    Get PDF
    BACKGROUND: Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing PST isolates for DNA extraction remains slow and tedious. RESULTS: To counteract the limitations associated with culturing PST, we developed and applied a field pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population across the United Kingdom (UK) underwent a major shift in recent years. Population genetic structure analyses revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field samples was much higher than that displayed by historical UK isolates, revealing a more diverse population of PST. CONCLUSIONS: Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle, this strategy can be widely applied to a variety of plant pathogens

    Contribution a l'etude des relations entre agrumes et Phytophthora spp.

    No full text
    Diplôme : Dr. d'Universit

    Specificite parasitaire :Phytophtora sp. and citrus trees

    No full text
    National audienc
    corecore