52 research outputs found

    Badge Size Reflects Sperm Oxidative Status within Social Groups in the House Sparrow Passer domesticus

    Get PDF
    The phenotype-linked fertility hypothesis proposes that male ornaments reflect male fertility. Male ornaments could honestly signal sperm quality due to the high susceptibility of sperm to free radicals on the one hand and the negative impact of oxidative stress on ornament elaboration on the other hand. Thus, only males with superior antioxidant defences could bear the cost of more elaborated sexual ornaments without suffering adverse fitness costs. Yet, in species where males experience differential access to fertile females, a trade-off emerges between investing into traits favouring mating opportunities (e.g. secondary sexual ornaments, social dominance, mate-guarding behaviours, etc.) or into traits favouring sperm competitive ability (e.g. sperm numbers and quality). When male sexual ornaments promote greater access to fertile females, a negative relationship can then be predicted between ornamentation and sperm quality. We tested the latter hypothesis and the phenotype-linked fertility hypothesis in wild House Sparrows Passer domesticus by exploring the relationships between sperm quality, melanin-based ornamentation, and redox status in blood and sperm. We found no correlation between badge size and sperm swimming performance. However, we found that within a social group, large-badged males better protect their ejaculates from oxidative stress, and thus produce less oxidized ejaculates. Additionally, we found that badge size did not reflect social dominance, and thus the protection of the ejaculate is independent of males’ ability to monopolize resources. Our results suggest that badge size might reflect male investment into the antioxidant protection of their sperm relative to a given social environment, and thus females may accrue both direct and indirect benefits by mating with large-badged males producing less oxidized ejaculates

    Experimental manipulation of reproductive tactics in Seba's short-tailed bats: consequences on sperm quality and oxidative status

    Get PDF
    To reproduce, males have to fertilize the female’s eggs, sometimes in competition with ejaculates of other males. In species where males display alternative reproductive tactics, whereby territorial males secure mating and non-territorial males have to sneak copulations, the latter might be expected to invest relatively more resources towards sperm quality compared with the territorial males. Sperm cells are especially vulnerable to oxidative stress, which reduces male fertility. Therefore, antioxidant resources are expected to modulate sperm quality, and might be allocated differently between reproductive tactics. To test the link between reproductive tactics, redox profile and sperm quality, we experimentally induced changes in the reproductive tactics of 39 captive males Seba’s short-tailed bats Carollia perspicillata. We monitored the blood and ejaculate oxidative balance, and the sperm quality before, 7 days and 21 days after the manipulation of reproductive tactic. Although ejaculates’ oxidative damage was negatively related to sperm velocity, males exhibited similar blood and ejaculates redox profiles and similar sperm quality, regardless of their reproductive tactic. Possibly, these results arise as a consequence of some constraints having been lifted during the experiment. Our results also suggest that, in Seba’s short-tailed bats, the expression of alternative reproductive tactics is not subjected to strong oxidative constraints. Furthermore, our results could reflect an absence of trade-off between pre- and post-copulatory traits in harem males, as they could be selected to invest both in female attraction and sperm quality, as a consequence of their inability to fully monopolize females

    Thiamethoxam soil contaminations reduce fertility of soil-dwelling beetles, Aethina tumida.

    Get PDF
    There in increasing evidence for recent global insect declines. This is of major concern as insects play a critical role in ecosystem functionality and human food security. Even though environmental pollutants are known to reduce insect fertility, their potential effects on insect fitness remain poorly understood - especially for soil-dwelling species. Here, we show that fertility of soil-dwelling beetles, Aethina tumida, is reduced, on average, by half due to field-realistic neonicotinoid soil contaminations. In the laboratory, pupating beetles were exposed via soil to concentrations of the neonicotinoid thiamethoxam that reflect global pollution of agricultural and natural habitats. Emerged adult phenotypes and reproduction were measured, and even the lowest concentration reported from natural habitats reduced subsequent reproduction by 50%. The data are most likely a conservative estimate as the beetles were only exposed during pupation. Since the tested concentrations reflect ubiquitous soil pollution, the data reveal a plausible mechanism for ongoing insect declines. An immediate reduction in environmental pollutants is urgently required if our aim is to mitigate the prevailing loss of species biodiversity

    The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory

    Get PDF
    Dysfunction of the Pep-PEPR system and its interplay with JA signalling results in increased plant susceptibility towards herbivore attack indicating that endogenous signalling also contributes to herbivore defenc

    Oxidative costs of cooperation in cooperatively breeding Damaraland mole-rats

    Get PDF
    Within cooperatively breeding societies, individuals adjust cooperative contributions to maximize indirect fitness and minimize direct fitness costs. Yet, little is known about the physiological costs of cooperation, which may be detrimental to direct fitness. Oxidative stress, the imbalance between reactive oxygen species (by-products of energy production) and antioxidant protection, may represent such a cost when cooperative behaviours are energetically demanding. Oxidative stress can lead to the accumulation of cellular damage, compromising survival and reproduction, thus mediating the trade-off between these competing life-history traits. Here, we experimentally increased energetically demanding cooperative contributions in captive Damaraland mole-rats (Fukomys damarensis). We quantified oxidative stress-related effects of increased cooperation on somatic and germline tissues, and the trade-off between them. Increased cooperative contributions induced oxidative stress in females and males, without increasing somatic damage. Males accumulated oxidative damage in their germline despite an increase in antioxidant defences. Finally, oxidative damage accumulation became biased towards the germline, while antioxidant protection remained biased towards the soma, suggesting that males favour the maintenance of somatic tissues (i.e. survival over reproduction). Our results show that heightened cooperative contributions can ultimately affect direct fitness through oxidative stress costs, which may represent a key selective pressure for the evolution of cooperation.A Postgraduate Research Support bursary awarded by the University of Pretoria; Department of Science and Technology/ National Research Foundation SARChI chair in Behavioural Ecology and Physiology; the Swiss National Science Foundation and animal husbandry and facilities at the Kalahari Research Centre were funded by European Research Council Advanced Grants.http://royalsocietypublishing.org/journal/rspbhj2021Mammal Research InstituteZoology and Entomolog
    corecore