20 research outputs found

    Quality indicators for patients with traumatic brain injury in European intensive care units

    Get PDF
    Background: The aim of this study is to validate a previously published consensus-based quality indicator set for the management of patients with traumatic brain injury (TBI) at intensive care units (ICUs) in Europe and to study its potential for quality measur

    Changing care pathways and between-center practice variations in intensive care for traumatic brain injury across Europe

    Get PDF
    Purpose: To describe ICU stay, selected management aspects, and outcome of Intensive Care Unit (ICU) patients with traumatic brain injury (TBI) in Europe, and to quantify variation across centers. Methods: This is a prospective observational multicenter study conducted across 18 countries in Europe and Israel. Admission characteristics, clinical data, and outcome were described at patient- and center levels. Between-center variation in the total ICU population was quantified with the median odds ratio (MOR), with correction for case-mix and random variation between centers. Results: A total of 2138 patients were admitted to the ICU, with median age of 49 years; 36% of which were mild TBI (Glasgow Coma Scale; GCS 13–15). Within, 72 h 636 (30%) were discharged and 128 (6%) died. Early deaths and long-stay patients (> 72 h) had more severe injuries based on the GCS and neuroimaging characteristics, compared with short-stay patients. Long-stay patients received more monitoring and were treated at higher intensity, and experienced worse 6-month outcome compared to short-stay patients. Between-center variations were prominent in the proportion of short-stay patients (MOR = 2.3, p < 0.001), use of intracranial pressure (ICP) monitoring (MOR = 2.5, p < 0.001) and aggressive treatme

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations

    Variation in neurosurgical management of traumatic brain injury

    Get PDF
    Background: Neurosurgical management of traumatic brain injury (TBI) is challenging, with only low-quality evidence. We aimed to explore differences in neurosurgical strategies for TBI across Europe. Methods: A survey was sent to 68 centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The questionnaire contained 21 questions, including the decision when to operate (or not) on traumatic acute subdural hematoma (ASDH) and intracerebral hematoma (ICH), and when to perform a decompressive craniectomy (DC) in raised intracranial pressure (ICP). Results: The survey was completed by 68 centers (100%). On average, 10 neurosurgeons work in each trauma center. In all centers, a neurosurgeon was available within 30 min. Forty percent of responders reported a thickness or volume threshold for evacuation of an ASDH. Most responders (78%) decide on a primary DC in evacuating an ASDH during the operation, when swelling is present. For ICH, 3% would perform an evacuation directly to prevent secondary deterioration and 66% only in case of clinical deterioration. Most respondents (91%) reported to consider a DC for refractory high ICP. The reported cut-off ICP for DC in refractory high ICP, however, differed: 60% uses 25 mmHg, 18% 30 mmHg, and 17% 20 mmHg. Treatment strategies varied substantially between regions, specifically for the threshold for ASDH surgery and DC for refractory raised ICP. Also within center variation was present: 31% reported variation within the hospital for inserting an ICP monitor and 43% for evacuating mass lesions. Conclusion: Despite a homogeneous organization, considerable practice variation exists of neurosurgical strategies for TBI in Europe. These results provide an incentive for comparative effectiveness research to determine elements of effective neurosurgical care

    Frequency of fatigue and its changes in the first 6 months after traumatic brain injury: results from the CENTER-TBI study

    Get PDF
    Background: Fatigue is one of the most commonly reported subjective symptoms following traumatic brain injury (TBI). The aims were to assess frequency of fatigue over the first 6 months after TBI, and examine whether fatigue changes could be predicted by demographic characteristics, injury severity and comorbidities. Methods: Patients with acute TBI admitted to 65 trauma centers were enrolled in the study Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI). Subj

    Tracheal intubation in traumatic brain injury

    Get PDF
    Background: We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods: Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results: In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion: The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration: NCT02210221

    Informed consent procedures in patients with an acute inability to provide informed consent

    Get PDF
    Purpose: Enrolling traumatic brain injury (TBI) patients with an inability to provide informed consent in research is challenging. Alternatives to patient consent are not sufficiently embedded in European and national legislation, which allows procedural variation and bias. We aimed to quantify variations in informed consent policy and practice. Methods: Variation was explored in the CENTER-TBI study. Policies were reported by using a questionnaire and national legislation. Data on used informed consent procedures were available for 4498 patients from 57 centres across 17 European countries. Results: Variation in the use of informed consent procedur

    Taking the next step: a systematic review and meta-analysis of physical activity and behavior change interventions in recent post-treatment breast cancer survivors

    No full text
    PURPOSE: Research has shown that recent post-treatment breast cancer survivors face significant challenges around physical activity as they transition to recovery. This review examined randomized controlled trials targeting physical activity behavior change in breast cancer survivors <5 years post-treatment and describes 1) characteristics of interventions for breast cancer survivors as well as 2) effect size estimates for these studies. METHODS: A systematic search was conducted following PRISMA guidelines with Medline, PubMed, PsycINFO, CINAHL, and Scopus databases. Data were abstracted for primary intervention strategies and other details (e.g., setting, duration, theory use). A subgroup analysis was conducted to assess intensity of exercise supervision/monitoring and intervention effectiveness. RESULTS: The search produced 14 unique behavior intervention trials from the US and abroad published 2005-2013. The mean sample size was 153 participants per study. All interventions included moderate-intensity activities plus various behavioral change strategies. Most interventions were partially or entirely home-based. The overall standardized mean difference was 0.47 (0.23, 0.67) with p < 0.001. CONCLUSION: Most interventions were effective in producing short-term behavior changes in physical activity, but varied greatly relative to intervention strategies and intensity of supervision/monitoring. Highly structured interventions tended to produce larger behavior change effects overall, but many larger effect sizes came from interventions supported by phone counseling or email. We observed that ‘more’ may not be better in terms of direct supervision/monitoring in physical activity behavior interventions. This may be important in exploring less resource-intensive options for effective behavior change strategies for recent post-treatment survivors

    Пламя. 2016. № 019

    Get PDF
    BACKGROUND: The Prophylactic hypOthermia to Lessen trAumatic bRain injury-Randomised Controlled Trial (POLAR-RCT) will evaluate whether early and sustained prophylactic hypothermia delivered to patients with severe traumatic brain injury improves patient-centred outcomes. METHODS: The POLAR-RCT is a multicentre, randomised, parallel group, phase III trial of early, prophylactic cooling in critically ill patients with severe traumatic brain injury, conducted in Australia, New Zealand, France, Switzerland, Saudi Arabia and Qatar. A total of 511 patients aged 18-60 years have been enrolled with severe acute traumatic brain injury. The trial intervention of early and sustained prophylactic hypothermia to 33 °C for 72 h will be compared to standard normothermia maintained at a core temperature of 37 °C. The primary outcome is the proportion of favourable neurological outcomes, comprising good recovery or moderate disability, observed at six months following randomisation utilising a midpoint dichotomisation of the Extended Glasgow Outcome Scale (GOSE). Secondary outcomes, also assessed at six months following randomisation, include the probability of an equal or greater GOSE level, mortality, the proportions of patients with haemorrhage or infection, as well as assessment of quality of life and health economic outcomes. The planned sample size will allow 80% power to detect a 30% relative risk increase from 50% to 65% (equivalent to a 15% absolute risk increase) in favourable neurological outcome at a two-sided alpha of 0.05. DISCUSSION: Consistent with international guidelines, a detailed and prospective analysis plan has been developed for the POLAR-RCT. This plan specifies the statistical models for evaluation of primary and secondary outcomes, as well as defining covariates for adjusted analyses and methods for exploratory analyses. Application of this statistical analysis plan to the forthcoming POLAR-RCT trial will facilitate unbiased analyses of these important clinical data. TRIAL REGISTRATION: ClinicalTrials.gov, NCT00987688 (first posted 1 October 2009); Australian New Zealand Clinical Trials Registry, ACTRN12609000764235 . Registered on 3 September 2009
    corecore