8 research outputs found

    Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer : an international multicenter study

    Get PDF
    The tissue distribution and prognostic relevance of subtype-specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small cell lung cancer (SCLC). The expression of subtype-specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype-specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC-A (ASCL1-dominant), SCLC-AN (combined ASCL1/NEUROD1), SCLC-N (NEUROD1-dominant) and SCLC-P (POU2F3-dominant), IHC and cluster analyses identified a quadruple-negative SCLC subtype (SCLC-QN). No unique YAP1-subtype was found. The highest overall survival rates were associated with non-neuroendocrine subtypes (SCLC-P and SCLC-QN) and the lowest with neuroendocrine subtypes (SCLC-A, SCLC-N, SCLC-AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard-of-care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype-specific protein abundances. In conclusion, we have investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1 and POU2F3 defines SCLC subtypes. No YAP1-subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines reveal distinct vulnerability profiles defined by transcription regulators

    Laser ablation-inductively coupled plasma-mass spectrometry analysis reveals differences in chemotherapeutic drug distribution in surgically resected pleural mesothelioma

    No full text
    Aims: Pleural mesothelioma (PM) is a highly aggressive thoracic tumour with poor prognosis. Although reduced tissue drug accumulation is one of the key features of platinum (Pt) resistance, little is known about Pt distribution in human PM. Methods: We assessed Pt levels of blood samples and surgically resected specimens from 25 PM patients who had received neoadjuvant Pt-based chemotherapy (CHT). Pt levels and tissue distributions were measured by laser ablation-inductively coupled plasma-mass spectrometry and correlated with clinicopathological features. Results: In surgically resected PM specimens, mean Pt levels of nontumourous (fibrotic) areas were significantly higher (vs tumourous regions, P = 0.0031). No major heterogeneity of Pt distribution was seen within the tumourous areas. Pt levels correlated neither with the microvessel area nor with apoptosis rate in the tumourous or nontumourous regions. A significant positive correlation was found between serum and both full tissue section and tumourous area mean Pt levels (r = 0.532, P = 0.006, 95% confidence interval [95% CI] 0.161-0.771 and r = 0.415, P = 0.039, 95% CI 0.011-0.702, respectively). Furthermore, a significant negative correlation was detected between serum Pt concentrations and elapsed time from the last cycle of CHT (r = −0.474, P = 0.017, 95% CI −0.738-−0.084). Serum Pt levels correlated negatively with overall survival (OS) (P = 0.029). Conclusions: There are major differences in drug distribution between tumourous and nontumourous areas of PM specimens. Serum Pt levels significantly correlate with full section and tumourous area average Pt levels, elapsed time from the last CHT cycle, and OS. Further studies investigating clinicopathological factors that modulate tissue Pt concentration and distribution are warranted

    Molecular profiles of small cell lung cancer subtypes : therapeutic implications

    No full text
    Small cell lung cancer (SCLC; accounting for approximately 13%–15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications. Small cell lung cancer is still regarded as a homogeneous disease associated with poor prognosis. Recent analysis, however, has led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and molecular profiles. The better understanding of these biologically distinct subtypes might help to define unique therapeutic vulnerabilities

    Journal of Molecular Medicine / The FAK inhibitor BI 853520 inhibits spheroid formation and orthotopic tumor growth in malignant pleural mesothelioma

    No full text
    No tyrosine kinase inhibitors are approved for malignant pleural mesothelioma (MPM). Preclinical studies identified focal adhesion kinase (FAK) as a target in MPM. Accordingly, we assessed the novel, highly selective FAK inhibitor (BI 853520) in 2D and 3D cultures and in vivo. IC50 values were measured by adherent cell viability assay. Cell migration and 3D growth were quantified by video microscopy and spheroid formation, respectively. Phosphorylation of FAK, Akt, S6, and Erk was measured by immunoblot. The mRNA expression of the putative tumor stem cell markers SOX2, Nanog, CD44, ALDH1, c-myc, and Oct4 was analyzed by qPCR. Cell proliferation, apoptosis, and tumor tissue microvessel density (MVD) were investigated in orthotopic MPM xenografts. In all 12 MPM cell lines, IC50 exceeded 5 M and loss of NF2 did not correlate with sensitivity. No synergism was found with cisplatin in adherent cells. BI 853520 decreased migration in 3 out of 4 cell lines. FAK phosphorylation was reduced upon treatment but activation of Erk, Akt, or S6 remained unaffected. Nevertheless, BI 853520 inhibited spheroid growth and significantly reduced tumor weight, cell proliferation, and MVD in vivo. BI 853520 has limited effect in adherent cultures but demonstrates potent activity in spheroids and in orthotopic tumors in vivo. Based on our findings, further studies are warranted to explore the clinical utility of BI 853520 in human MPM.(VLID)365713

    Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer

    No full text
    Background: No targeted drugs are currently available against small cell lung cancer (SCLC). BCL-2 family members are involved in apoptosis regulation and represent therapeutic targets in many malignancies. Methods: Expression of BCL-2 family members in 27 SCLC cell lines representing all known four SCLC molecular subtypes was assessed by qPCR, Western blot and mass spectrometry-based proteomics. BCL-2 and MCL-1 inhibition (venetoclax and S63845, respectively) was assessed by MTT assay and flow cytometry and in mice bearing human SCLC tumours. Drug interactions were calculated using the Combenefit software. Ectopic BAX overexpression was achieved by expression plasmids. Results: The highest BCL-2 expression levels were detected in ASCL1- and POU2F3-driven SCLC cells. Although sensitivity to venetoclax was reflected by BCL-2 levels, not all cell lines responded consistently despite their high BCL-2 expression. MCL-1 overexpression and low BAX levels were both characteristic for venetoclax resistance in SCLC, whereas the expression of other BCL-2 family members did not affect therapeutic efficacy. Combination of venetoclax and S63845 resulted in significant, synergistic in vitro and in vivo anti-tumour activity and apoptosis induction in double-resistant cells; however, this was seen only in a subset with detectable BAX. In non-responding cells, ectopic BAX overexpression sensitised to venetoclax and S63845 and, furthermore, induced synergistic drug interaction. Conclusions: The current study reveals the subtype specificity of BCL-2 expression and sheds light on the mechanism of venetoclax resistance in SCLC. Additionally, we provide preclinical evidence that combined BCL-2 and MCL-1 targeting is an effective approach to overcome venetoclax resistance in high BCL-2-expressing SCLCs with intact BAX

    Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small-cell lung cancer : an international multicenter study

    No full text
    The tissue distribution and prognostic relevance of subtype-specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small-cell lung cancer (SCLC). The expression of subtype-specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype-specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC-A (ASCL1-dominant), SCLC-AN (combined ASCL1/NEUROD1), SCLC-N (NEUROD1-dominant), and SCLC-P (POU2F3-dominant), IHC and cluster analyses identified a quadruple-negative SCLC subtype (SCLC-QN). No unique YAP1-subtype was found. The highest overall survival rates were associated with non-neuroendocrine subtypes (SCLC-P and SCLC-QN) and the lowest with neuroendocrine subtypes (SCLC-A, SCLC-N, SCLC-AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard-of-care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype-specific protein abundances. In conclusion, we investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1, and POU2F3 defines SCLC subtypes. No YAP1-subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines revealed distinct vulnerability profiles defined by transcription regulators
    corecore