7 research outputs found

    Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots

    Get PDF
    In vitro regeneration of Arabidopsis from roots is generally achieved via indirect organogenesis. First, transdifferentiation of lateral root primordia to calli is achieved by a balanced auxin-to-cytokinin ratio that is followed by the induction of shoot meristem formation using a high cytokinin level. Here we demonstrate that if the root explants were transferred onto a hormone-free medium after a transient (4-days) cytokinin treatment, embryogenic marker genes (LEC1, LEC2, FUS3) started to be expressed. App. 50% of the regeneration foci developed into plantlets with trichome-less cotyledon-like leaves. Moreover, the somatic embryogenesis defective lec1 mutant could regenerate only shoots with trichome-bearing leaves under this condition. Based on these observations, the mixed accomplishment of shoot organogenesis and somatic embryogenesis is hypothesized in the Arabidopsis root explants cultured under hormone-free conditions following cytokinin induction. Using whole seedlings instead of root explants in the same experimental set up, no regenerates were formed on the roots. Applying the auxin transport inhibitor TIBA to the root-to-shoot junction of the seedlings, the regeneration ability of the root could be restored. The observations indicate that shoot-derived endogenous auxin blocks the cytokinin-induced regeneration process in the roots of whole seedlings. The expression of the wound-induced transcription factor WIND1 could be detected in the roots of unwounded seedlings if the shoot-to-root auxin transport was inhibited. Manipulating the exogenous cytokinin level together with the endogenous shoot-to-root auxin transport therefore could mimic the effect of wounding (removal of shoot) on plant regeneration from roots. Key message Transferring root explants from high cytokinin to hormone-free conditions resulted in the expression of embryogenic markers. Inhibiting the shoot-to-root auxin transport had similar effect on regeneration as wounding

    Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots

    Get PDF
    In vitro regeneration of Arabidopsis from roots is generally achieved via indirect organogenesis. First, transdifferentiation of lateral root primordia to calli is achieved by a balanced auxin-to-cytokinin ratio that is followed by the induction of shoot meristem formation using a high cytokinin level. Here we demonstrate that if the root explants were transferred onto a hormone-free medium after a transient (4-days) cytokinin treatment, embryogenic marker genes (LEC1, LEC2, FUS3) started to be expressed. App. 50% of the regeneration foci developed into plantlets with trichome-less cotyledon-like leaves. Moreover, the somatic embryogenesis defective lec1 mutant could regenerate only shoots with trichome-bearing leaves under this condition. Based on these observations, the mixed accomplishment of shoot organogenesis and somatic embryogenesis is hypothesized in the Arabidopsis root explants cultured under hormone-free conditions following cytokinin induction. Using whole seedlings instead of root explants in the same experimental set up, no regenerates were formed on the roots. Applying the auxin transport inhibitor TIBA to the root-to-shoot junction of the seedlings, the regeneration ability of the root could be restored. The observations indicate that shoot-derived endogenous auxin blocks the cytokinin-induced regeneration process in the roots of whole seedlings. The expression of the wound-induced transcription factor WIND1 could be detected in the roots of unwounded seedlings if the shoot-to-root auxin transport was inhibited. Manipulating the exogenous cytokinin level together with the endogenous shoot-to-root auxin transport therefore could mimic the effect of wounding (removal of shoot) on plant regeneration from roots. Key message Transferring root explants from high cytokinin to hormone-free conditions resulted in the expression of embryogenic markers. Inhibiting the shoot-to-root auxin transport had similar effect on regeneration as wounding

    The Arabidopsis RLCK VI_A2 Kinase Controls Seedling and Plant Growth in Parallel with Gibberellin

    Get PDF
    The plant-specific receptor-like cytoplasmic kinases (RLCKs) form a large, poorly characterized family. Members of the RLCK VI_A class of dicots have a unique characteristic: their activity is regulated by Rho-of-plants (ROP) GTPases. The biological function of one of these kinases was investigated using a T-DNA insertion mutant and RNA interference. Loss of RLCK VI_A2 function resulted in restricted cell expansion and seedling growth. Although these phenotypes could be rescued by exogenous gibberellin, the mutant did not exhibit lower levels of active gibberellins nor decreased gibberellin sensitivity. Transcriptome analysis confirmed that gibberellin is not the direct target of the kinase; its absence rather affected the metabolism and signalling of other hormones such as auxin. It is hypothesized that gibberellins and the RLCK VI_A2 kinase act in parallel to regulate cell expansion and plant growth. Gene expression studies also indicated that the kinase might have an overlapping role with the transcription factor circuit (PIF4-BZR1-ARF6) controlling skotomorphogenesis-related hypocotyl/cotyledon elongation. Furthermore, the transcriptomic changes revealed that the loss of RLCK VI_A2 function alters cellular processes that are associated with cell membranes, take place at the cell periphery or in the apoplast, and are related to cellular transport and/or cell wall reorganisation

    AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis

    Get PDF
    Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels

    In silico identification and experimental validation of amino acid motifs required for the Rho-of-plants GTPase-mediated activation of receptor-like cytoplasmic kinases

    Get PDF
    KEY MESSAGE: Several amino acid motifs required for Rop-dependent activity were found to form a common surface on RLCKVI_A kinases. This indicates a unique mechanism for Rho-type GTPase-mediated kinase activation in plants. Rho-of-plants (Rop) G-proteins are implicated in the regulation of various cellular processes, including cell growth, cell polarity, hormonal and pathogen responses. Our knowledge about the signalling pathways downstream of Rops is continuously increasing. However, there are still substantial gaps in this knowledge. One reason for this is that these pathways are considerably different from those described for yeast and/or animal Rho-type GTPases. Among others, plants lack all Rho/Rac/Cdc42-activated kinase families. Only a small group of plant-specific receptor-like cytoplasmic kinases (RLCK VI_A) has been shown to exhibit Rop-binding-dependent in vitro activity. These kinases do not carry any known GTPase-binding motifs. Based on the sequence comparison of the Rop-activated RLCK VI_A and the closely related but constitutively active RLCK VI_B kinases, several distinguishing amino acid residues/motifs were identified. All but one of these were found to be required for the Rop-mediated regulation of the in vitro activity of two RLCK VI_A kinases. Structural modelling indicated that these motifs might form a common Rop-binding surface. Based on in silico data mining, kinases that have the identified Rop-binding motifs are present in Embryophyta but not in unicellular green algae. It can, therefore, be supposed that Rops recruited these plant-specific kinases for signalling at an early stage of land plant evolution

    Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots

    Get PDF
    In vitro regeneration of Arabidopsis from roots is generally achieved via indirect organogenesis. First, transdifferentiation of lateral root primordia to calli is achieved by a balanced auxin-to-cytokinin ratio that is followed by the induction of shoot meristem formation using a high cytokinin level. Here we demonstrate that if the root explants were transferred onto a hormone-free medium after a transient (4-days) cytokinin treatment, embryogenic marker genes (LEC1, LEC2, FUS3) started to be expressed. App. 50% of the regeneration foci developed into plantlets with trichome-less cotyledon-like leaves. Moreover, the somatic embryogenesis defective lec1 mutant could regenerate only shoots with trichome-bearing leaves under this condition. Based on these observations, the mixed accomplishment of shoot organogenesis and somatic embryogenesis is hypothesized in the Arabidopsis root explants cultured under hormone-free conditions following cytokinin induction. Using whole seedlings instead of root explants in the same experimental set up, no regenerates were formed on the roots. Applying the auxin transport inhibitor TIBA to the root-to-shoot junction of the seedlings, the regeneration ability of the root could be restored. The observations indicate that shoot-derived endogenous auxin blocks the cytokinin-induced regeneration process in the roots of whole seedlings. The expression of the wound-induced transcription factor WIND1 could be detected in the roots of unwounded seedlings if the shoot-to-root auxin transport was inhibited. Manipulating the exogenous cytokinin level together with the endogenous shoot-to-root auxin transport therefore could mimic the effect of wounding (removal of shoot) on plant regeneration from roots. Key message Transferring root explants from high cytokinin to hormone-free conditions resulted in the expression of embryogenic markers. Inhibiting the shoot-to-root auxin transport had similar effect on regeneration as wounding
    corecore