954 research outputs found
The narrow and moving HeII lines in nova KT Eri
We present outburst and quiescence spectra of the classical nova KT Eri and
discuss the appearance of a sharp HeII 4686 Ang emission line, whose origin is
a matter of discussion for those novae that showed a similar component. We
suggest that the sharp HeII line, when it first appeared toward the end of the
outburst optically thick phase, comes from the wrist of the dumbbell structure
characterizing the ejecta as modeled by Ribeiro et al. (2013). When the ejecta
turned optically thin, the already sharp HeII line became two times narrower
and originated from the exposed central binary. During the optically thin
phase, the HeII line displayed a large change in radial velocity that had no
counterpart in the Balmer lines (both their narrow cores and the broad
pedestals). The large variability in radial velocity of the HeII line continued
well into quiescence, and it remains the strongest emission line observed over
the whole optical range.Comment: in press in A&
The large amplitude outburst of the young star HBC 722 in NGC 7000/IC 5070, a new FU Orionis candidate
We report the discovery of a large amplitude outburst from the young star HBC
722 (LkHA 188 G4) located in the region of NGC 7000/IC 5070. On the basis of
photometric and spectroscopic observations, we argue that this outburst is of
the FU Orionis type. We gathered photometric and spectroscopic observations of
the object both in the pre-outburst state and during a phase of increase in its
brightness. The photometric BVRI data (Johnson-Cousins system) that we present
were collected from April 2009 to September 2010. To facilitate transformation
from instrumental measurements to the standard system, fifteen comparison stars
in the field of HBC 722 were calibrated in the BVRI bands. Optical spectra of
HBC 722 were obtained with the 1.3-m telescope of Skinakas Observatory (Crete,
Greece) and the 0.6-m telescope of Schiaparelli Observatory in Varese (Italy).
The pre-outburst photometric and spectroscopic observations of HBC 722 show
both low amplitude photometric variations and an emission-line spectrum typical
of T Tau stars. The observed outburst started before May 2010 and reached its
maximum brightness in September 2010, with a recorded Delta V~4.7 mag.
amplitude. Simultaneously with the increase in brightness the color indices
changed significantly and the star became appreciably bluer. The light curve of
HBC 722 during the period of rise in brightness is similar to the light curves
of the classical FUors - FU Ori and V1057 Cyg. The spectral observations during
the time of increase in brightness showed significant changes in both the
profiles and intensity of the spectral lines. Only H alpha remained in
emission, while the H beta, Na I 5890/5896, Mg I triplet 5174, and Ba II
5854/6497 lines were in strong absorption.Comment: 4 pages, 6 figures, accepted for publication in A&
The nature and evolution of Nova Cygni 2006
AIMS: Nova Cyg 2006 has been intensively observed throughout its full
outburst. We investigate the energetics and evolution of the central source and
of the expanding ejecta, their chemical abundances and ionization structure,
and the formation of dust. METHOD: We recorded low, medium, and/or
high-resolution spectra (calibrated into accurate absolute fluxes) on 39
nights, along with 2353 photometric UBVRcIc measures on 313 nights, and
complemented them with IR data from the literature. RESULTS: The nova displayed
initially the normal photometric and spectroscopic evolution of a fast nova of
the FeII-type. Pre-maximum, principal, diffuse-enhanced, and Orion absorption
systems developed in a normal way. After the initial outburst, the nova
progressively slowed its fading pace until the decline reversed and a second
maximum was reached (eight months later), accompanied by large spectroscopic
changes. Following the rapid decline from second maximum, the nova finally
entered the nebular phase and formed optically thin dust. We computed the
amount of formed dust and performed a photo-ionization analysis of the
emission-line spectrum during the nebular phase, which showed a strong
enrichment of the ejecta in nitrogen and oxygen, and none in neon, in agreement
with theoretical predictions for the estimated 1.0 Msun white dwarf in Nova Cyg
2006. The similarities with the poorly investigated V1493 Nova Aql 1999a are
discussed.Comment: in press in Astronomy and Astrophysic
- …