406 research outputs found

    The market impacts of shortening feed supply chains in Europe

    Get PDF
    Recently, consumers’ awareness regarding food production has increased, leading to a growing focus on shorter food supply chains and regional or local food systems. In the livestock sector, these developments are closely related to a regionalization of feed production. At the same time, a low self-sufficiency rate in protein feed is being reported for many European countries. In this paper, we analyze market impacts resulting from a complete switch to regionally produced feed in the European livestock sector. We simulate a shortening of feed supply chains in European livestock production using a large-scale agricultural sector model. Livestock production was restricted to feed that can be produced within the same EU member state. Our work represents a first step towards a simulation of regional or local food systems. The results reveal large increases in the prices of livestock products in Europe due to the shortening of feed supply chains. This is a result of a significant increase in livestock production costs. The ability to supply livestock products with regionally produced feed in the EU would be improved through a reduced consumption of livestock products

    Stakeholder-designed scenarios for global food security assessments

    Get PDF
    To guide policymaking, decision makers require a good understanding of the long-term drivers of food security and their interactions. Scenario analysis is widely considered as the appropriate tool to assess ‘wicked problems’, such as ensuring global food security, that are characterized by a high level of complexity and uncertainty. This paper describes the development process, storylines and drivers of four new global scenarios that are specifically designed to explore global food security up to the year 2050. To ensure the relevance, credibility and legitimacy of the scenarios, they have been developed using a participatory process, involving a diverse group of stakeholders. The scenarios consist of storylines and a scenario database that presents projections for key drivers, which can be used as an input into global simulation models

    Climate change induced transformations of agricultural systems: insights from a global model

    Get PDF
    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere's temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis

    Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios

    Get PDF
    Agriculture is one of the sectors that is expected to be most significantly impacted by climate change. There has been considerable interest in assessing these impacts and many recent studies investigating agricultural impacts for individual countries and regions using an array of models. However, the great majority of existing studies explore impacts on a country or region of interest without explicitly accounting for impacts on the rest of the world. This approach can bias the results of impact assessments for agriculture given the importance of global trade in this sector. Due to potential impacts on relative competitiveness, international trade, global supply, and prices, the net impacts of climate change on the agricultural sector in each region depend not only on productivity impacts within that region, but on how climate change impacts agricultural productivity throughout the world. In this study, we apply a global model of agriculture and forestry to evaluate climate change impacts on US agriculture with and without accounting for climate change impacts in the rest of the world. In addition, we examine scenarios where trade is expanded to explore the implications for regional allocation of production, trade volumes, and prices. To our knowledge, this is one of the only attempts to explicitly quantify the relative importance of accounting for global climate change when conducting regional assessments of climate change impacts. The results of our analyses reveal substantial differences in estimated impacts on the US agricultural sector when accounting for global impacts vs. US-only impacts, particularly for commodities where the United States has a smaller share of global production. In addition, we find that freer trade can play an important role in helping to buffer regional productivity shocks

    Achieving Zero Hunger by 2030 A Review of Quantitative Assessments of Synergies and Tradeoffs amongst the UN Sustainable Development Goals

    Get PDF
    The Sustainable Development Goal 2 “Zero hunger” (SDG2) sets clear global targets for ensuring access to sufficient food and healthy nutrition for all by 2030, while keeping food systems within sustainable boundaries and protecting livelihoods. Yet, the current trends show the level of challenge ahead, especially as the COVID-19 pandemic worsens the global development prospects. Intrinsically, SDG2 presents some points of tension between its internal targets and brings some synergies but also strong trade-offs with other sustainable development goals. \textlessbr /\textgreater We summarize in this paper the main relations between SDG2 targets and the other development goals and explain how the modelling literature has analyzed the SDG interactions around “Zero hunger”. SDG2 integrates four ambitious objectives – adequate food, no malnutrition, in increased incomes for smallholders, greater sustainability – that will require careful implementation to be conducted in synergy. We show that the compatibility of these objectives will depend on the interplay of future food demand drivers and the contribution of productivity gains across the food system. \textlessbr /\textgreater Analyzing the SDGs’ interrelations reveals the strong synergies between SDG2 and some other basic subsistence goals, in particular, Goal 1 “No poverty” and Goal 3 “Good health and well- being”. These goals need to be jointly addressed in order to succeed in “Zero hunger”. Several other SDGs have been shown to be key enablers for SDG2, in particular on the socio-economic side. On the other hand, agricultural production substantially contributes to the risks of exceeding critical global sustainability thresholds. We illustrate how recent modelling work has shed light on the interface between future food and nutrition needs, and the various environmental dimensions. Specifically, several important SDGs have been shown to compete directly with SDG2 through their common demands for scarce natural resources – including land for climate (SDG13), for biodiversity (SDG15) and for cities (SDG11), as well as the provision of water, both for the environment and for human needs (SDG6). Quantitative assessments show that more efficient production systems and technologies, pricing of externalities, and integrated resource management can mitigate some of these tradeoffs, but are unlikely to succeed in resolving these altogether. \textlessbr /\textgreater The success of achieving SDG2 in the face of these challenges will require new investments, smoothly functioning trade and effective markets, as well as changes in consumption patterns. Forward-looking analyses of global food systems indicate that deep transformations combining various measures will be needed to simultaneously achieve SDG2 targets while remaining within the planetary boundaries. These require fundamental changes, both on the supply side and on the demand side, and highlight the importance of SDG12 on “responsible production and consumption”

    Addressing climate change adaptation with a stochastic integrated assessment model: Analysis of common agricultural policy measures

    Get PDF
    Stochastic agro-economic model GLOBIOM is used to demonstrate how best to design and evaluate the CAP’s financial and structural measures, both individually and jointly, in the face of inherent uncertainty and risk. The model accounts for plausible shocks simultaneously and derives measures that are robust against all shock scenarios; it can thus help avoid the irreversibility and sunk costs that occur in unexpected scenarios.To allow adequate agricultural production, we show that the distribution of CAP funds needs to account for exposure to risks, security targets, and the synergies between policy measures, including production, trade, storage, and irrigation technologies
    • …
    corecore