3 research outputs found

    Lewis Acid Coordination Redirects S-Nitrosothiol Reduction

    No full text
    S-Nitrosothiols (RSNOs) serve as air-stable reservoirs for nitric oxide in biology and are responsible for a myriad of physiological responses. While copper enzymes promote NO release from RSNOs by serving as Lewis acids capable of intramolecular electron-transfer, redox innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3 coordinates to the RSNO oxygen atom in adducts RSNO-B(C6F5)3, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials (-1.0 to -1.1 vs. NHE), B(C6F5)3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer-sphere chemical reduction results in formation of the Lewis acid stabilized hyponitrite dianion trans-[LA–O–N=N–O–LA]2– (LA = B(C6F5)3) that releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO-B(C6F5)3]•/- radical-anion susceptible to N-N coupling prior to loss of RSSR

    Lewis Acid-Assisted Reduction of Nitrite to Nitric and Nitrous Oxide via the Elusive Nitrite Radical Dianion

    No full text
    Reduction of nitrite anions [NO2]- takes place in a myriad of environments such as in the soil as part of the biogeochemical nitrogen cycle as well as in acidified nuclear waste. Nitrite reduction typically takes place within the coordination sphere of a redox active transition metal. Lewis acid coordination, however, can dramatically modify the reduction potential of this polyoxoanion to allow for reduction under non-aqueous conditions (-0.74 V vs. NHE). This strategy enables the isolation of a borane-capped nitrite dianion [NO2]2- along with its spectroscopic study consistent with reduction to the N(II) oxidation state. Protonation of the nitrite dianion results in facile loss of nitric oxide (NO) while reaction of the nitrite dianion with nitric oxide results in disproportionation to nitrous oxide (N2O) and nitrite, connecting three redox levels in the global nitrogen cycle
    corecore