47 research outputs found

    Methods of monitoring the Ground-Climate-Pipeline system in sections with hazardous processes

    Get PDF
    The paper considers the concept of combining various means of monitoring of the Ground-Climate-Pipeline system sections exposed to hazardous processes. The concept of "hazardous processes"is described. Sensors selected for monitoring parameters in the Ground-Climate-Pipeline system are described. A monitoring scheme is proposed and described, all elements of which are functionally combined through information transfer networks. The advantages of using artificial intelligence in the proposed monitoring system are explained

    1-O-Octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-GS-441524 (V2043). Evaluation of Oral V2043 in a Mouse Model of SARS-CoV-2 Infection and Synthesis and Antiviral Evaluation of Additional Phospholipid Esters with Enhanced Anti-SARS-CoV-2 Activity

    Get PDF
    Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections

    Antischistosomal Activity of Hexadecyloxypropyl Cyclic 9-(S)-[3-Hydroxy-2-(Phosphonomethoxy)Propyl]Adenine and Other Alkoxyalkyl Esters of Acyclic Nucleoside Phosphonates Assessed by Schistosome Worm Killing In Vitroâ–¿

    No full text
    9-(S)-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA] has been reported to have antischistosomal activity. Ether lipid esters of (S)-HPMPA and cidofovir (CDV) have greatly increased activities in antiviral assays and in lethal animal models of poxvirus diseases. To see if ether lipid esters of CDV and (S)-HPMPA enhance antischistosomal activity, we tested their alkoxyalkyl esters using Schistosoma mansoni worm killing in vitro. Hexadecyloxypropyl (HDP)-cyclic-(S)-HPMPA and HDP-cyclic-CDV exhibited significant in vitro antischistosomal activities and may offer promise alone or in combination with praziquantel

    Software for risk assessment based on the data processing of monitoring the state of the Ground-Climate-Pipeline system

    No full text
    The paper considers various software for monitoring the state of the Ground-Climate-Pipeline System, namely GIS "Extremum"and PipeGIS. These two software packages are analysed, and their disadvantages are identified. Requirements are established for the development of new software for monitoring the state of the Ground-Climate-Pipeline System in sections with hazardous processes

    Inhibition of HIV-1 by Octadecyloxyethyl Esters of (S)-[3-Hydroxy-2-(Phosphonomethoxy)Propyl] Nucleosides and Evaluation of Their Mechanism of Action â–¿

    No full text
    (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC [cidofovir]) and (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA) are potent inhibitors of a variety of DNA viruses. These drugs possess a 3′-hydroxyl equivalent which could support chain extension from an incorporated drug molecule. HPMPC and HPMPA were initially reported to lack activity against human immunodeficiency virus type 1 (HIV-1); more recent results have shown that the octadecyloxyethyl (ODE) and hexadecyloxypropyl (HDP) esters of HPMPA are potent inhibitors of the virus. We have synthesized the ODE esters of a series of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides, including HPMPC, HPMP-guanine (HPMPG), HPMP-thymine (HPMPT), and HPMP-diaminopurine (HPMPDAP), as well as the ODE ester of the obligate chain terminator (S)-9-[3-methoxy-2-(phosphonomethoxy)-propyl]adenine (MPMPA). All compounds except ODE-HPMPT were inhibitors of HIV-1 replication at low nanomolar concentrations. These compounds were also inhibitors of the replication of HIV-1 variants that are resistant to various nucleoside reverse transcriptase (RT) inhibitors at concentrations several times lower than would be expected to be achieved in vivo. To investigate the mechanism of the antiviral activity, the active metabolites of HPMPC and HPMPA were studied for their effects on reactions catalyzed by HIV-1 RT. Incorporation of HPMPC and HPMPA into a DNA primer strand resulted in multiple inhibitory effects exerted on the enzyme and showed that neither compound acts as an absolute chain terminator. Further, inhibition of HIV-1 RT also occurred when these drugs were located in the template strand. These results indicate that HPMPC and HPMPA inhibit HIV-1 by a complex mechanism and suggest that this class of drugs has a broader spectrum of activity than previously shown
    corecore