5 research outputs found

    Generation of GeV protons from 1 PW laser interaction with near critical density targets

    Full text link
    The propagation of ultra intense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two-dimensional Particle-in-Cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.Comment: 26 pages, 8 figure

    Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    Full text link
    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb explosion regime from ultra-thin double-layer (heavy ions / light ions) foils of different thicknesses were performed under the anticipated experimental conditions for Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microns (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. 2D PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.Comment: 26 pages, 6 figure

    Ion acceleration with few cycle relativistic laser pulses from foil targets

    Full text link
    Ion acceleration resulting from the interaction of 11 fs laser pulses of ~35 mJ energy with ultrahigh contrast (<10^-10), and 10^19 W/cm^2 peak intensity with foil targets made of various materials and thicknesses at normal (0-degree) and 45-degree laser incidence is investigated. The maximum energy of the protons accelerated from both the rear and front sides of the target was above 1 MeV. A conversion efficiency from laser pulse energy to proton beam is estimated to be as high as ~1.4 % at 45-degree laser incidence using a 51 nm-thick Al target. The excellent laser contrast indicates the predominance of vacuum heating via the Brunels effect as an absorption mechanism involving a tiny pre-plasma of natural origin due to the Gaussian temporal laser pulse shape. Experimental results are in reasonable agreement with theoretical estimates where proton acceleration from the target rear into the forward direction is well explained by a TNSA-like mechanism, while proton acceleration from the target front into the backward direction can be explained by the formation of a charged cavity in a tiny pre-plasma. The exploding Coulomb field from the charged cavity also serves as a source for forward-accelerated ions at thick targets.Comment: 12 pages, 7 figures

    Effects of ionization in a laser Wakefield accelerator

    No full text
    Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure

    Effects of ionization in a laser Wakefield accelerator

    No full text
    Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure
    corecore