43 research outputs found
Identification of Unique α4 Chain Structure and Conserved Antiangiogenic Activity of α3NC1 Type IV Collagen in Zebrafish
BACKGROUND: Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied.
RESULTS: We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells.
CONCLUSIONS: Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain
Recommended from our members
Activinâlike kinaseâ3 activity is important for kidney regeneration and reversal of fibrosis
Molecules associated with TGF-ÎČ superfamily such as BMPs and TGF-ÎČ are key regulators of inflammation, apoptosis and cellular transitions. Here, we demonstrate that the BMP receptor activinâlike kinase 3 (Alk3) is elevated early in response to kidney injury and its deletion in the tubular epithelium leads to enhanced TGF-ÎČ1 / Smad3 signaling, epithelial damage and fibrosis, suggesting a protective role for Alk3 mediated signaling. Structureâfunction analysis of Alk3 / BMP / BMPRII ligandâreceptor complex coupled with synthetic organic chemistry led us to construct a library of small peptide agonists of BMP signaling that function via Alk3 receptor. One such peptide agonist, THRâ123, suppressed inflammation, apoptosis epithelialâtoâmesenchymal transition program, and reversed fibrosis in mouse models of acute and chronic injury. Combining THRâ123 and angiotensinâconverting enzyme inhibitor, captopril, exhibited additive therapeutic benefit in controlling fibrosis. Our studies demonstrate that BMP signaling agonists constitute a new line of therapeutic agents with a potential utility in the clinic to induce regeneration, repair and reverse fibrosis
Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression
Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality yet anti-stromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor ÎČ (TGF-ÎČ) signaling have elevated epithelial Stat3 activity and develop a stiffer, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several Kras-driven mouse models, both the loss of TGF-ÎČ signaling and elevated ÎČ1-integrin mechanosignaling engaged a positive feedback loop whereby Stat3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial Stat3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-ÎČ signaling. In PDAC patient biopsies, higher matricellular protein and activated Stat3 associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors, and highlight Stat3 and mechanics as key drivers of this phenotype
Engineered Exosomes Targeting Myc Reverse the Proneural-Mesenchymal Transition and Extend Survival of Glioblastoma
Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice. Treatment of late stage GBM tumors with iExo-Myc inhibits proliferation and angiogenesis, suppresses tumor growth, and extends survival. Transcriptional profiling of tumors reveals that the mesenchymal transition and estrogen receptor signaling pathways are impacted by Myc inhibition. Single nuclei RNA sequencing (snRNA-seq) shows that iExo-Myc treatment induces transcriptional repression of multiple growth factor and interleukin signaling pathways, triggering a mesenchymal to proneural transition and shifting the cellular landscape of the tumor. These data confirm that Myc is an effective anti-glioma target and that iExo-Myc offers a feasible, readily translational strategy to inhibit challenging oncogene targets for the treatment of brain tumors
Genetic Reprogramming With Stem Cells Regenerates Glomerular Epithelial Podocytes in Alport Syndrome
Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFÎČ1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome
Loss of placental growth factor ameliorates maternal hypertension and preeclampsia in mice
Preeclampsia remains a clinical challenge due to its poorly understood pathogenesis. A prevailing notion is that increased placental production of soluble fms-like tyrosine kinase-1 (sFlt-1) causes the maternal syndrome by inhibiting proangiogenic placental growth factor (PlGF) and VEGF. However, the significance of PlGF suppression in preeclampsia is uncertain. To test whether preeclampsia results from the imbalance of angiogenic factors reflected by an abnormal sFlt-1/PlGF ratio, we studied PlGF KO (Pgf-/-) mice and noted that the mice did not develop signs or sequelae of preeclampsia despite a marked elevation in circulating sFLT-1. Notably, PlGF KO mice had morphologically distinct placentas, showing an accumulation of junctional zone glycogen. We next considered the role of placental PlGF in an established model of preeclampsia (pregnant catechol-O-methyltransferase-deficient [COMT-deficient] mice) by generating mice with deletions in both the Pgf and Comt genes. Deletion of placental PlGF in the context of COMT loss resulted in a reduction in maternal blood pressure and increased placental glycogen, indicating that loss of PlGF might be protective against the development of preeclampsia. These results identify a role for PlGF in placental development and support a complex model for the pathogenesis of preeclampsia beyond an angiogenic factor imbalance
Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis
Fibrosis can be considered as wound healing that never ceases, and activated fibroblasts (myofibroblasts) probably play a critical role in this unabated tissue repair process. In the setting of renal fibrosis, two central questions remain unanswered: Where do activated myofibroblasts come from; and what mechanism or mechanisms keep them activated? The study by Chen and colleagues addresses the role of platelet-derived growth factor receptor (PDGFR) signaling in the activation of myofibroblasts
A peek into cancer-associated fibroblasts: origins, functions and translational impact
In malignant tumors, cancer cells adapt to grow within their host tissue. As a cancer progresses, an accompanying host stromal response evolves within and around the nascent tumor. Among the host stromal constituents associated with the tumor are cancer-associated fibroblasts, a highly abundant and heterogeneous population of cells of mesenchymal lineage. Although it is known that fibroblasts are present from the tumor's inception to the end-stage metastatic spread, their precise functional role in cancer is not fully understood. It has been suggested that cancer-associated fibroblasts play a key role in modulating the behavior of cancer cells, in part by promoting tumor growth, but evolving data also argue for their antitumor actions. Taken together, this suggests a putative bimodal function for cancer-associated fibroblasts in oncogenesis. As illustrated in this Review and its accompanying poster, cancer-associated fibroblasts are a dynamic component of the tumor microenvironment that orchestrates the interplay between the cancer cells and the host stromal response. Understanding the complexity of the relationship between cancer cells and cancer-associated fibroblasts could offer insights into the regulation of tumor progression and control of cancer
Protection against SARS-CoV-2 by BCG vaccination is not supported by epidemiological analyses
The Bacillus CalmetteâGuerin (BCG) vaccine provides protection against tuberculosis (TB), and is thought to provide protection against non-TB infectious diseases. BCG vaccination has recently been proposed as a strategy to prevent infection with SARS-CoV-2 (CoV-2) to combat the COVID-19 outbreak, supported by its potential to boost innate immunity and initial epidemiological analyses which observed reduced severity of COVID-19 in countries with universal BCG vaccination policies. Seventeen clinical trials are currently registered to inform on the benefits of BCG vaccinations upon exposure to CoV-2. Numerous epidemiological analyses showed a correlation between incidence of COVID-19 and BCG vaccination policies. These studies were not systematically corrected for confounding variables. We observed that after correction for confounding variables, most notably testing rates, there was no association between BCG vaccination policy and COVD-19 spread rate or percent mortality. Moreover, we found variables describing co-morbidities, including cardiovascular death rate and smoking prevalence, were significantly associated COVID-19 spread rate and percent mortality, respectively. While reporting biases may confound our observations, our epidemiological findings do not provide evidence to correlate overall BCG vaccination policy with the spread of CoV-2 and its associated mortality
Dual reporter genetic mouse models of pancreatic cancer identify an epithelialâtoâmesenchymal transitionâindependent metastasis program
Abstract Epithelialâtoâmesenchymal transition (EMT) is a recognized eukaryotic cell differentiation program that is also observed in association with invasive tumors. Partial EMT program in carcinomas imparts cancer cells with mesenchymalâlike features and is proposed as essential for metastasis. Precise determination of the frequency of partial EMT program in cancer cells in tumors and its functional role in metastases needs unraveling. Here, we employed mesenchymal cell reporter mice driven by αSMAâCre and Fsp1âCre with genetically engineered mice that develop spontaneous pancreatic ductal adenocarcinoma (PDAC) to monitor partial EMT program. Both αSMAâ and Fsp1âCreâmediated partial EMT programs were observed in the primary tumors. The established metastases were primarily composed of cancer cells without evidence for a partial EMT program, as assessed by our fate mapping approach. In contrast, metastatic cancer cells exhibiting a partial EMT program were restricted to isolated single cancer cells or micrometastases (3â5 cancer cells). Collectively, our studies identify large metastatic nodules with preserved epithelial phenotype and potentially unravel a novel metastasis program in PDAC