165 research outputs found

    Inflation from High-Scale Supersymmetry Breaking

    Full text link
    Supersymmetry breaking close to the scale of grand unification can explain cosmic inflation. As we demonstrate in this paper, this can be achieved in strongly coupled supersymmetric gauge theories, such that the energy scales of inflation and supersymmetry breaking are generated dynamically. As a consequence, both scales are related to each other and exponentially suppressed compared to the Planck scale. As an example, we consider a dynamical model in which gauging a global flavor symmetry in the supersymmetry-breaking sector gives rise to a Fayet-Iliopoulos D term. This results in successful D-term hybrid inflation in agreement with all theoretical and phenomenological constraints. The gauged flavor symmetry can be identified with U(1)_B-L, where B and L denote baryon and lepton number, respectively. In the end, we arrive at a consistent cosmological scenario that provides a unified picture of high-scale supersymmetry breaking, viable D-term hybrid inflation, spontaneous B-L breaking at the scale of grand unification, baryogenesis via leptogenesis, and standard model neutrino masses due to the type-I seesaw mechanism.Comment: 61 pages + references, 5 figures. v2: minor changes, updated references, matches version published in PR

    Dynamical D-Terms in Supergravity

    Get PDF
    Most phenomenological models of supersymmetry breaking rely on nonzero F-terms rather than nonzero D-terms. An important reason why D-terms are often neglected is that it turns out to be very challenging to realize D-terms at energies parametrically smaller than the Planck scale in supergravity. As we demonstrate in this paper, all conventional difficulties may, however, be overcome if the generation of the D-term is based on strong dynamics. To illustrate our idea, we focus on a certain class of vector-like SUSY breaking models that enjoy a minimal particle content and which may be easily embedded into more complete scenarios. We are then able to show that, upon gauging a global flavor symmetry, an appropriate choice of Yukawa couplings readily allows to dynamically generate a D-term at an almost arbitrary energy scale. This includes in particular the natural and consistent realization of D-terms around, above and below the scale of grand unification in supergravity, without the need for fine-tuning of any model parameters. Our construction might therefore bear the potential to open up a new direction for model building in supersymmetry and early universe cosmology.Comment: 34 pages, 1 tabl

    Emerging chromo-natural inflation

    Full text link
    The shift-symmetric coupling of a pseudo-scalar particle driving inflation to gauge fields provides a unique way of probing cosmic inflation. We show for an SU(2) gauge group how a classical isotropic background gauge field develops from the standard quantum mechanical vacuum in the far past. Over the course of inflation, the theory dynamically evolves from an approximately abelian regime into an inherently non-abelian regime, with distinct predictions for the scalar and tensor power spectra. The latter regime closely resembles a setup known as chromo-natural inflation, although our main focus here is on a new part of the parameter space which has received little attention so far. For single-field slow roll inflation models, large scales may exit the horizon in the abelian regime, ensuring agreement with the observations of the anisotropies in the cosmic microwave background, whereas smaller scales experience the non-abelian effects. This results in a strong enhancement of the stochastic gravitational wave background at small scales, e.g. at frequencies accessible with ground-based interferometers. For the scalar power spectrum, a similar enhancement arises due to non-linear contributions.Comment: 53 pages, 6 appendixe

    Chiral Anomaly and Schwinger Effect in Non-Abelian Gauge Theories

    Full text link
    We study the production of chiral fermions in a background of a strong non-abelian gauge field with a non-vanishing Chern-Pontryagin density. We discuss both pair production analogous to the Schwinger effect as well as asymmetric production through the chiral anomaly, sourced by the Chern-Pontryagin density. In abelian gauge theories one may nicely understand these processes by considering that the fermion dispersion relation forms discrete Landau levels. Here we extend this analysis to a non-abelian gauge theory, considering an intrinsically non-abelian isotropic and homogeneous SU(2) gauge field background with a non-vanishing Chern-Pontryagin density. We show that the asymmetric fermion production, together with a non-trivial vacuum contribution, correctly reproduces the chiral anomaly. This indicates that the usual vacuum subtraction scheme, imposing normal ordering, fails in this case. As a concrete example of this gauge field background, we consider chromo-natural inflation. Applying our analysis to this particular model, we compute the backreaction of the generated fermions on the gauge field background. This backreaction receives contributions both from the vacuum through a Coleman-Weinberg-type correction and from the fermion excitations through an induced current.Comment: 27 pages + appendices, 2 figures; v2: published versio

    Gauge Field and Fermion Production during Axion Inflation

    Full text link
    We study the dual production of helical Abelian gauge fields and chiral fermions through the Chern-Simons (CS) coupling with a pseudo-scalar inflaton in the presence of a chiral anomaly. Through the CS term, the motion of the inflaton induces a tachyonic instability for one of the two helicities of the gauge field. We show that the resulting helical gauge field necessarily leads to the production of chiral fermions by deforming their Fermi sphere into discrete Landau levels. The population of the lowest Landau level leads to a chiral asymmetry as inferred from the chiral anomaly, while the higher levels are populated symmetrically through pair production. From the backreaction of the fermions on the gauge field production we derive a conservative but stringent upper bound on the magnitude of the gauge fields. Consequently, we find that the scalar perturbations sourced by these helical gauge fields, responsible for enhanced structure formation on small scales, get reduced significantly. We also discuss the fate of the primordial chiral asymmetry and of the helical gauge fields after inflation, and show that the instability in the chiral plasma tends to erase these primordial asymmetries. This result may impact scenarios where the baryon asymmetry of the Universe is connected to primordial magnetic fields.Comment: 46 pages, 11 figures; v2: reference added, published versio
    • …
    corecore