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Abstract

Most phenomenological models of supersymmetry breaking rely on nonzero F-terms rather than nonzero 
D-terms. An important reason why D-terms are often neglected is that it turns out to be very challenging to 
realize D-terms at energies parametrically smaller than the Planck scale in supergravity. As we demonstrate 
in this paper, all conventional difficulties may, however, be overcome if the generation of the D-term is based 
on strong dynamics. To illustrate our idea, we focus on a certain class of vector-like SUSY breaking models 
that enjoy a minimal particle content and which may be easily embedded into more complete scenarios. 
We are then able to show that, upon gauging a global flavor symmetry, an appropriate choice of Yukawa 
couplings readily allows to dynamically generate a D-term at an almost arbitrary energy scale. This includes 
in particular the natural and consistent realization of D-terms around, above and below the scale of grand 
unification in supergravity, without the need for fine-tuning of any model parameters. Our construction 
might therefore bear the potential to open up a new direction for model building in supersymmetry and 
early universe cosmology.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction and preliminaries

In this paper, we wish to illustrate how an effective Fayet–Iliopoulos (FI) D-term may be 
dynamically generated at an intermediate energy scale in strongly interacting supersymmetric 
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gauge theories. In Sections 1.1 and 1.2, we shall first review the well-known problems related 
to the existing constructions of constant and effective FI-terms in the literature. The reader ac-
quainted with these issues may therefore directly skip to Section 1.3, in which we outline our 
basic idea.

1.1. Constant field-independent FI-terms in supergravity

In any realistic supersymmetric extension of the standard model, supersymmetry (SUSY) 
needs to be spontaneously broken in some hidden sector. The order parameters of spontaneous 
SUSY breaking in a given supersymmetric theory are the expectation values of the auxil-
iary F and D fields. While models that break SUSY via nonzero F-terms are referred to as 
O’Raifeartaigh models [1], models based on nonzero D-terms always feature a realization of the 
Fayet–Iliopoulos mechanism [2], which is why they are also known as FI models of SUSY break-
ing. The crucial observation behind SUSY breaking via (Abelian) D-terms is that the Lagrangian 
L of a U(1) gauge theory also admits the following supersymmetric and gauge-invariant opera-
tor,

LFI =
∫

d4θKFI = −gξD, KFI = −2gξV, (1)

where KFI is part of the Kähler potential, V ∼ (λ, A, D) represents the vector superfield con-
taining the U(1) gauge degrees of freedom (DOFs), ξ is a free parameter of mass-dimension 2, 
g stands for the U(1) gauge coupling constant, and θ denotes the anticommuting superspace 
coordinate. If one manages to stabilize all scalars carrying nonzero U(1) gauge charge around 
their origin, the operator in Eq. (1) leads to a nonvanishing D-term scalar potential belonging 
to the U(1) gauge interactions, VD ∝ g2ξ2, and hence to the spontaneous breaking of SUSY. 
This mechanism has several interesting phenomenological applications in supersymmetric model 
building as well as in cosmology. A nonvanishing FI-term LFI can, for instance, play a crucial 
role in mediating SUSY breaking to the visible sector or provide the vacuum energy density that 
is necessary to drive the inflationary stage in the very early universe [3].

Despite their abundant occurrence in the literature on SUSY phenomenology over the last four 
decades, some important aspects of FI-terms have, however, become clear only in the past few 
years [4–6]. As it turns out, it is in fact very difficult or even impossible to consistently couple 
a U(1) gauge theory featuring a genuine (i.e. constant, field-independent) FI-term to minimal 
supergravity (SUGRA). If the FI parameter ξ is assumed to be a fundamental constant, coupling 
the rigid theory to gravity requires that the final locally supersymmetric theory must have an ad-
ditional exact global continuous symmetry.1 As shown in Refs. [4,6], this result is independent 
of the SUGRA formalism and equally applies in the old [9] as well as in the new minimal [10]
off-shell formulation of SUGRA. According to general rules of quantum gravity, all global sym-
metries are, however, eventually broken by gravity effects [11].2 A theory based on minimal 

1 This conclusion can be avoided if the rigid theory only contains fields with vanishing U(1) charge, cf. Ref. [7] for an 
explicit model, or if ξ/2 is quantized in units of the reduced Planck mass MPl = (8πG)−1/2 [8]. The latter is always the 
case once the underlying U(1) gauge group is assumed to be compact, i.e. when its global topology is that of a true U(1)

and not the one of the real numbers R. For noncompact global topology, ξ can be parametrically small, ξ/M2
Pl � 1; but 

then the SUGRA theory needs to exhibit a global continuous symmetry.
2 Even if one disregards this conceptional argument about the general properties of quantum gravity, theories with a 

constant FI-term are still in trouble for phenomenological reasons. Upon the coupling to SUGRA, the initial non-R U(1)
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SUGRA and exhibiting a global symmetry is therefore necessarily inconsistent. This also ex-
plains why all attempts to find string compactifications with genuine FI-terms in the low-energy 
effective theory have been futile so far.

1.2. Effective field-dependent FI-terms from string theory

A possible way out of these difficulties is to resort to field-dependent FI-terms, in the case of 
which ξ is regarded as an effective parameter that actually depends on the vacuum expectation 
values (VEVs) of other scalar fields, ξ = ξ(〈φi〉). The generation of such field-dependent FI-
terms is therefore always associated with the spontaneous breaking of the U(1) gauge symmetry 
and one should actually not refer to them as FI-terms. Instead, they merely correspond to the VEV 
of the auxiliary D field in the new vacuum after spontaneous symmetry breaking, ξ ≡ 〈D〉/g. 
As pointed in Ref. [4], the fundamental obstacle in coupling a theory with a constant FI-term to 
SUGRA, which eventually also necessitates the introduction of a global symmetry, is the fact that 
such theories do not possess a gauge-invariant Ferrara–Zumino (FZ) supercurrent multiplet [12]. 
By appropriately choosing the gauge transformation behavior of the fields φi , the gauge invari-
ance of the FZ-multiplet can, however, be preserved and the theory can be consistently coupled 
to SUGRA within the old minimal formalism. Famous examples of such a construction are the 
field-dependent FI-terms frequently encountered in string theory [13], which are based on the 
Green–Schwarz mechanism [14] of anomaly cancellation,

KFI = fGS
(
V + Φ + Φ†). (2)

Here, fGS is an appropriate function of the linear combination V + Φ + Φ† and Φ stands for a 
(not necessarily properly normalized) modulus field that transforms in the affine representation 
of the (noncompact) U(1) gauge group. An alternative approach to deal with the non-gauge 
invariance of the FZ-multiplet in the presence of a constant FI-term is to trade the FZ-multiplet 
for the so-called S-multiplet [6], which is always well-defined. Gauging the S-multiplet rather 
than the FZ-multiplet then amounts to coupling the rigid theory to 16/16 SUGRA [15] rather than 
to minimal SUGRA. In this non-minimal framework for SUGRA, the gravity multiplet contains 
an additional chiral matter multiplet next to the ordinary graviton and the ordinary gravitino. 
Interestingly enough, this additional chiral field can be identified with the above modulus field 
Φ and the FI-term in the gauged theory ends up being of the same form as in Eq. (2).

Now one, however, faces the problem that the modulus Φ needs to be stabilized at sufficiently 
high energies, since it would otherwise absorb the effective FI-term in its VEV. This requirement 
imposes strong constraints on the underlying high-energy theory, which may be hard to fulfill. 
One possibility in this context could potentially be to rely on a large gravity-mediated mass 
mφ for the modulus field. Depending on the size of the effective FI parameter ξGS, this would, 
however, require an extremely large gravitino mass, mφ ∼ m3/2 � g

√|ξGS| [16]. Alternatively, 
one may attempt to stabilize the modulus above the SUSY breaking scale by means of a dedicated 
mechanism. In this case, the vector multiplet V will, however, acquire the same mass as the 
modulus Φ via the Stückelberg mechanism. Then, once we integrate out the modulus at low 
energies, also the vector multiplet decouples, such that there is no energy range in which we 

gauge symmetry turns into a continuous local R symmetry. In the context of the standard model, every such symmetry 
is, however, necessarily anomalous, which renders the entire theory inconsistent at the quantum level. We are thankful to 
W. Buchmüller and R. Kallosh for a helpful discussion on this point.
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could meaningfully speak of an effective FI-term for the U(1) vector field. Besides this, even 
more elaborate attempts to stabilize Φ are not guaranteed to be successful. In Ref. [16], it has, 
for instance, recently been shown that, in the context of ordinary D-term hybrid inflation, all of 
the standard, straightforward approaches to stabilize the modulus field Φ are bound to fail.

1.3. Dynamical FI-terms in strongly interacting gauge theories

Because of these limitations of the existing constructions of effective FI-terms in the literature, 
it is desirable to seek alternative mechanisms for the generation of field-dependent FI-terms 
which are consistent also in the presence of gravity and which, at the same time, do not lead 
to any problems related to the modulus field Φ . An attractive possibility in this context, which 
we will further explore in this paper, is to base the generation of the FI-term on the dynamics 
of strongly interacting supersymmetric gauge theories.3 Here, our main observation is that, in 
models of dynamical SUSY breaking (DSB), it is possible to generate nonvanishing D-terms by 
gauging a global U(1) flavor symmetry, followed by adjusting the VEVs of the resulting charged 
composite fields at low energies by means of appropriate Yukawa interactions.

In this sense, our construction bears some resemblance to the mechanism described in 
Ref. [18], which also utilizes strong dynamics to generate an effective D-term. Instead of a su-
perpotential suited for dynamical SUSY breaking, this mechanism, however, relies on a runaway 
superpotential. While our F-term scalar potential exhibits a stable SUSY-breaking vacuum from 
the very beginning, the corresponding scalar potential analyzed in Ref. [18] therefore initially 
comes with a supersymmetric vacuum at infinity. After weakly gauging a global symmetry (just 
as in our case), the runaway directions in the F-term potential are then stabilized by the D-term 
contributions to the scalar potential. A further crucial difference between our mechanism and the 
one presented in Ref. [18] is that we focus on simple vector-like gauge theories, while Ref. [18]
only discusses a set of chiral models. Our mechanism hence appears to be more minimal and 
promises to be more easily applicable in the explicit construction of realistic models.

Now, to see how an effective D-term may be generated in a given vector-like DSB model, 
imagine that the low-energy DOFs of this theory correspond to, for instance, a set of mesons Mi . 
Further, suppose that the low-energy effective theory contains a global U(1) flavor symmetry, 
under which the meson fields carry charges qi . We are then free to gauge this flavor symmetry, 
which provides us with a U(1) D-term of the following form,

D = −g
∑

i

qi

∣∣Mi
∣∣2 + �D,

∑
all

q =
∑
all

q3 = 0, (3)

where �D stands for further contributions to D from additional charged fields and where we 
implicitly assume that at least some of the charges qi are nonzero. Also, note that the sum of 
all charges as well as the sum of all charges cubed are required to vanish in order to ensure 
anomaly-freedom. As an elementary ingredient of our construction, we emphasize that, in the 
context of dynamical SUSY breaking, all flat directions in moduli space are necessarily lifted. 
The mesons are thus guaranteed to acquire well-defined and definite VEVs,〈

Mi
〉 = fi(λj , g)Λ. (4)

Here, Λ is the dynamical scale of the strong interactions and the fi are model-dependent func-
tions of the Yukawa coupling constants λj in the theory as well as of the gauge coupling 

3 The first model exploiting this possibility to generate a dynamical FI-term has been presented in Ref. [17].
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constant g. Note that, in contrast to the corresponding scalar VEVs discussed in Ref. [18], our 
meson VEVs are also still well-behaved in the limit g → 0. For appropriate functions fi , it is then 
straightforward to generate a nonzero D-term proportional to the dynamical scale, D ∼ gΛ2.

By construction, the such obtained dynamical D-terms can never be the only source of SUSY 
breaking. Instead, SUSY is always also broken by the strong dynamics responsible for the VEVs 
of the composite fields at low energies, cf. Eq. (4). This source of SUSY breaking is associated 
with one or several nonzero F-terms, the magnitude of which exceeds the one of the D-term. This 
result is consistent with general theorems in SUGRA, which state that generically the dominant 
contribution to SUSY breaking is provided by F-terms rather than by D-terms [17–19],

|D| � |F |. (5)

An obvious advantage of relying on strong dynamics in generating an effective D-term is that the 
magnitude of the such obtained D-term is controlled by the dynamical scale Λ, so that it can be 
easily varied over many orders of magnitude,√|ξ | ∼ Λ, Λmin � Λ� MPl. (6)

Here, Λmin denotes a model-dependent phenomenological lower bound on the dynamical scale, 
while the Planck mass MPl represents a model-independent theoretical upper bound. Depending 
on the details of the coupling between the strongly interacting and the visible sector, we expect 
Λmin to be typically of O(100) TeV. Meanwhile, we point out that values of the dynamical scale 
exceeding the Planck scale would take us out of the validity range of SUGRA as a low-energy 
effective description of quantum gravity and hence such large Λ values are not admissible. We 
also mention that, in the context of a grand unified theory (GUT), a dynamically generated D-
term could very well be of the order of the unification scale, ΛGUT � 2 × 1016 GeV. This would 
certainly be particularly appealing from the perspective of both particle physics and cosmology.

The range of viable Λ values in our dynamical setup, cf. Eq. (6), needs to be contrasted 
with the expected size of the anomalous FI-term in string theory. All relevant energy scales in 
string theory, the compactification scale Mc, the string scale Ms as well as the four-dimensional 
Planck scale MPl, are all very large, Mc ∼ Ms ∼ MPl ∼ 1018 GeV, which is why, purely based 
on dimensional analysis, we would also expect a stringy FI-term to be very large. To make this 
argument a bit more explicit, suppose that the function fGS in Eq. (2) can be expanded as a Taylor 
series in VM = V + Φ + Φ†, so that in the vicinity of VM = 0 we are able to write4

fGS(VM) ∼ M2
Pl

∞∑
n=0

1

n!cnV
n
M, (7)

Without any particular fine-tuning among the order O(1) coefficients cn, the function fGS is 
then guaranteed to yield an effective FI-term scale close to the Planck scale, 

√|ξGS| ∼ MPl. The 
dynamical generation of an effective D-term in a strongly coupled field theory is hence superior 
to its stringy alternative based on the Green–Schwarz mechanism in the sense that the former is 
capable of realizing ξ values in a much larger range than the latter.

In the present paper, we will restrict ourselves to the arguably simplest case and illustrate our 
idea only by means of DSB models based on SP(Nc) gauge dynamics, i.e. dynamical models 

4 Note that, in order to realize a non-spurious FI-term along with a kinetic term for the modulus field Φ , this series 
needs to extend at least up to cubic order in VM . Otherwise, the linear term, which actually induces the nonvanishing 
effective D-term, could always be shifted away by a field redefinition.
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breaking SUSY à la IYIT [20]. To this end, we first describe in detail the minimal case of an 
SP(1) theory5 in the following section, before we then comment on the general SP(Nc) case in 
Section 3. Besides this, we also explain in Section 3 why DSB models based on SU(Nc) instead 
of SP(Nc) dynamics fail to provide a basis for the successful generation of an effective D-term. 
In Section 4, we then sketch what kind of effects a dynamically generated D-term may have 
on the superparticle mass spectrum in the visible sector as well as how it may be used for the 
construction of inflationary models. Finally, we summarize our results and give an outlook as to 
how our study may be continued in Section 5.

2. Minimal setup based on SP(1) dynamics (∼= SU(2) dynamics)

Our dynamical generation of an effective FI-term will be based on the IYIT model. In Sec-
tion 2.1, we shall first review this model and outline how it accomplishes the dynamical breaking 
of SUSY via the O’Raifeartaigh mechanism. The reader familiar with this model may directly 
proceed with Section 2.2, in which we explicitly present our construction of the field-dependent 
FI-term.

2.1. The IYIT model of dynamical supersymmetry breaking

The vector-like model introduced in Ref. [20], sometimes referred to as the IYIT model, rep-
resents a minimal example of a supersymmetric gauge theory accomplishing spontaneous SUSY 
breaking by means of strong dynamics. This model is based on strongly interacting SP(Nc) gauge 
dynamics and features 2Nf = 2(Nc + 1) chiral quark (i.e. matter) fields Qi transforming in the 
fundamental representation of SP(Nc). At energies below the dynamical scale Λ, the interaction 
between these quark fields is best described in terms of the 2Nf (2Nf − 1)/2 gauge-invariant 
composite meson fields Mij = −Mji = QiQj/Λ. Compared to other DSB models, the field 
content of the low-energy effective theory is hence rather minimal. Unlike, for instance, the DSB 
models based on SU(Nc) dynamics, it only contains meson fields and no other, more compli-
cated composite states such as baryons and antibaryons. A further virtue of the IYIT model is 
its vector-like matter content, which facilitates its analysis and which makes it easier to embed 
it into more complete scenarios. Chiral models, such as those presented in Ref. [18], tend, by 
contrast, to be more involved and are perhaps less suited for further generalizations [21].

For our special choice of quark flavors, Nf = Nc + 1, no dynamical (ADS) superpoten-
tial [22] is generated at low energies. The quantum moduli space is instead simply spanned 
by the Nf (2Nf − 1) flat meson directions Mij , subject to the following constraint [23],

Pf
(
Mij

) = ΛNc+1, (8)

where Pf(M) denotes the Pfaffian of the antisymmetric meson matrix M , [Pf(M)]2 = det(M). 
This constraint is the quantum mechanically deformed version of the classical moduli constraint, 
Pf(M) = 0, where the appearance of the dynamical scale on the right-hand side of Eq. (8) is 
due to nonperturbative instanton effects. A convenient way to implement the deformed moduli 
constraint when studying the quantum moduli space of the SP(Nc) theory is to include it directly 
into the effective superpotential in the form of a Lagrange constraint term,

5 In the convention used here, the strongly coupled SP(1) theory is equivalent to an SU(2) gauge theory.
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Weff ∝ T

ΛNc−1

[
Pf

(
Mij

) − ΛNc+1], (9)

with the chiral superfield T representing a Lagrange multiplier. The overall normalization of this 
effective superpotential is unfortunately uncalculable as the nature of the Kähler potential for the 
field T is unknown. T certainly does not possess a perturbative Kähler potential and whether or 
not it possesses a nonperturbative Kähler potential is an open question. If strong-coupling effects 
below the dynamical scale should happen to generate a Kähler potential for T , the superpotential 
in Eq. (9) would end up having a definite normalization,

Weff = λT

T

ΛNc−1

[
Pf

(
Mij

) − ΛNc+1], (10)

with T being canonically normalized and for some finite coupling constant λT . If, on the other 
hand, no Kähler potential should be generated, we would have to interpret T as a mere auxiliary 
field. This would then correspond to the limit λT → ∞ in the above superpotential. As we are 
unable to calculate the Kähler potential for the field T , we will simply decouple all effects related 
to it in the following. Practically speaking, we will do so by assuming that the dimensionless 
parameter λT is much larger than all other coupling constants in the theory.

In the above outlined setup, dynamical SUSY breaking is now achieved by stabilizing all flat 
directions in moduli space by means of appropriate Yukawa interactions. For every flat direction 
Mij , we introduce a chiral singlet field Zij , which we then couple to the fundamental quark fields 
in the tree-level superpotential as follows,6

Wtree = 1

2
λ

ij
klZijQ

kQl, λkl
ij = −λkl

ji = −λlk
ij , Zij = −Zji. (11)

Here, we assume all complex phases of the O(1) Yukawa coupling constants to be absorbed 
in the singlet fields Zij for simplicity. Note that the maximal flavor symmetry of this tree-level 
superpotential corresponds to a global SU(2Nf ) symmetry, provided that all Yukawa couplings 
are equal, λij

kl ≡ λ. We shall, however, only be interested in Abelian subgroups of this maximal 
flavor symmetry, which is why we are free to redefine the fields Zij such that Eq. (11) turns into

Wtree = 1

2
λijZijQ

iQj . (12)

At energies below the dynamical scale, this superpotential can be reformulated in terms of the 
meson fields Mij , so that the full effective superpotential is eventually given as

Weff � λT

T

ΛNc−1

[
Pf

(
Mij

) − ΛNc+1] + 1

2
λijΛZijM

ij , (13)

where we have neglected all corrections to the Yukawa couplings λij that arise when running 
down from high to low energies. This means in particular that the meson fields in Eq. (13) are 
supposed to represent the canonically normalized DOFs at low energies. The crucial property 
of the superpotential in Eq. (13) is that it leads to F-term conditions that cannot all be satisfied 
simultaneously, as long as none of the Yukawa couplings λij is actually zero. SUSY is therefore 
spontaneously broken via the O’Raifeartaigh mechanism. On the other hand, in the case of one 
of the couplings λij being zero, the low-energy vacuum is located at infinity in moduli space and 
SUSY remains preserved. Likewise, for more than one Yukawa coupling being zero, we recur to 

6 Throughout this paper, the flavor indices i, j , k, l always run from 1 to 2Nf .
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Table 1
Chiral fields present in the minimal SP(1) model (in the high-energy as well as in the low-energy regime) and charge 
assignment under the weakly gauged U(1) flavor symmetry. Here, a = 1,2,3,4. At low energies, the quark fields form 
mesons, of which in particular the charged mesons M+ = Q1Q2/Λ and M− = Q3Q4/Λ play an important role in the 
generation of the effective FI-term. All of the above charges could in principle also be rescaled, q → nq , as long as the 
gauge coupling constant g is appropriately rescaled, too, g → g/n.

Field Q1 Q2 Q3 Q4 M+ M− M0
a Z+ Z− Z0

a

U(1) charge +1/2 +1/2 −1/2 −1/2 +1 −1 0 +1 −1 0

the original situation, in which the moduli space exhibits a number of flat directions, along which 
SUSY is unbroken. In the following, we will disregard these possibilities and focus on the case 
of generic, nonzero Yukawa couplings, so that SUSY is always dynamically broken.

2.2. Effective FI-term upon weakly gauging a global U(1) flavor symmetry

In the remainder of this section, we will now focus on the case of SP(1) ∼= SU(2) dynamics 
in combination with Nf = 2 quark flavors and illustrate how the IYIT model may allow for the 
dynamical generation of an effective FI-term. In doing so, we will also discuss the magnitude 
of the SUSY breaking scale and outline how the fundamental DOFs eventually end up being 
distributed in the low-energy effective theory. Here, we will in particular observe that the role 
played by some of the fundamental DOFs turns out to be slightly different than in the usual 
IYIT model without an Abelian FI-term. To start with, let us inspect once more the tree-level 
superpotential in Eq. (11) for the special case of Nf = 2. This superpotential exhibits an axial 
U(1) symmetry associated with a Qi phase rotation. It is this U(1) symmetry for which we are 
now going to generate a nonvanishing effective D-term. In the first step, we first of all need to 
(weakly) gauge this symmetry and assign appropriate gauge charges to the chiral fields of our 
model. We assign U(1) charges to the quark fields Qi as follows,

[Q1] = [Q2] = +1

2
, [Q3] = [Q4] = −1

2
. (14)

Correspondingly, the six singlet fields Zij then carry the following charges,

[Z12] = −1, [Z34] = +1, [Z13] = [Z14] = [Z23] = [Z24] = 0. (15)

For the ease of notation, we will therefore refer to Z12 as Z−, to Z34 as Z+ and to Z13, Z14, 
Z23, and Z24 as Z0

1 , Z0
2 , Z0

3 , and Z0
4 in the following. We emphasize that our charge assignment 

in Eqs. (14) and (15) is such that 
∑

i qi = ∑
i q

3
i = 0, as required so as to render the U(1) flavor 

symmetry anomaly-free, cf. Eq. (3). Furthermore, also the mesons in the low-energy effective 
theory now carry U(1) gauge charges. According to their quark content, the six mesons Mij are 
charged as follows,[

M12] = +1,
[
M34] = −1,

[
M13] = [

M14] = [
M23] = [

M24] = 0. (16)

Similarly as in the case of the singlet fields, we will from now on refer to M12 as M+, to M34

as M− and to M13, M14, M23, and M24 as M0
1 , M0

2 , M0
3 , and M0

4 . For an overview of our 
assignment of U(1) gauge charges, cf. also Table 1.

In terms of the charge eigenstates at low energies, the effective superpotential in Eq. (13) can 
be rewritten as,
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Weff � λT T
[
Pf

(
Mij

) − Λ2] + λ+ΛM+Z− + λ−ΛM−Z+ + λ0
aΛM0

aZ0
a, (17)

where a = 1, 2, 3, 4 and where we have renamed the Yukawa couplings λij in Eq. (13) in an 
obvious way. Meanwhile, as we are dealing with the particular case of six mesons, the Pfaffian 
Pf(M) of the antisymmetric meson matrix can be readily expanded in the following fashion,

Pf
(
Mij

) = M+M− − M0
1M0

4 + M0
2M0

3 . (18)

Eq. (17) in combination with Eq. (18) allows to compute the F-term scalar potential for the scalar 
components of our meson and singlet fields. As we have gauged the global U(1) flavor symmetry 
of the tree-level superpotential in Eq. (11), this potential now needs to be supplemented by a 
D-term scalar potential accounting for the U(1) gauge interactions in the scalar sector,

VD = g2

2

(|M+|2 − |M−|2 + |Z+|2 − |Z−|2 + . . .
)2

, (19)

where the ellipsis stands for hypothetical particles from other sectors which also carry U(1)

gauge charge. The central idea behind our mechanism for the dynamical generation of an effec-
tive D-term is now the following: By appropriately choosing the Yukawa couplings in Eq. (17)
we are able to engineer the VEVs of the charged fields contributing to VD in Eq. (19) in such a 
way that 〈Z±〉 = 0 and 〈M+〉 = 〈M−〉. This then results in a nonvanishing effective FI parameter7

ξ = 〈|M−|2〉 − 〈|M+|2〉 = 0. (20)

Let us now calculate the VEVs of all scalar meson and singlet fields in our SP(1) model. 
To facilitate our analysis, we assume a (slight) hierarchy between the Yukawa couplings for the 
uncharged fields and those for the charged fields, λ0

a � λ±. This automatically guarantees that 
all neutral fields are stabilized around the origin, 〈M0

a 〉 = 〈Z0
a〉 = 0. In consequence of that, the 

deformed moduli constraint turns into a condition for the charged mesons M+ and M− only,

Pf
(
Mij

) = Λ2 → M+M− = Λ2. (21)

This constraint is invariant under U(1) super-gauge transformations, M± → M±e±S , for some 
superfield-valued super-gauge transformation parameter S. A convenient way to parametrize the 
fluctuations of M+ and M− around their respective VEVs is hence the following,

M+ = (〈M+〉 + M
)
eS, M− = (〈M−〉 + M

)
e−S, (22)

where M and S are chiral superfields of mass dimension 1 and 0, respectively. The advantage 
of this parametrization is that, later on, it will allow us to explicitly identify the super-gauge 
transformation parameter S with the Goldstone multiplet, which is absorbed by the U(1) vector 
multiplet V upon the spontaneous breaking of the U(1) symmetry, cf. Section 2.4. Plugging the 
expressions in Eq. (22) into the effective superpotential in Eq. (17) and setting all neutral meson 
and singlet fields to 0, we find

Weff � λT T
[〈M+〉〈M−〉 − Λ2] + λT

(〈M+〉 + 〈M−〉)T M + λT T M2

+ λ+Λ
(〈M+〉 + M

)
eSZ− + λ−Λ

(〈M−〉 + M
)
e−SZ+. (23)

7 Unless stated otherwise, we shall always assume that except for M+ and M− no other charged field acquires a (large) 
VEV contributing to ξ . This means in particular that we shall take it for granted that the effective ξ parameter in Eq. (20)
is not inadvertently absorbed by the VEV of another hidden-sector field.
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This form of the effective superpotential makes several important things immediately obvious: 
(i) The fields Z+ and Z− have both nonvanishing F-terms. They hence both contribute to the 
goldstino multiplet X responsible for the spontaneous breaking of SUSY. (ii) If the field T is 
indeed dynamical, i.e. if λT ∼ O(1), it, too, possesses a nonvanishing F-term, rendering it also 
part of the goldstino multiplet. Here, an explicit calculation leads to FT � λ+λ−/λT Λ. If, on the 
other hand, T is a mere auxiliary field, i.e. if λT → ∞, its F-term vanishes and the deformed 
moduli constraint ends up being exactly fulfilled by the VEVs of the charged meson fields,

λT → ∞, FT → 0, 〈M+〉〈M−〉 − Λ2 → 0. (24)

(iii) The fields T and M share a supersymmetric mass term. Once we require that the deformed 
moduli constraint be satisfied exactly, i.e. once we send λT to infinity, this mass blows up. The 
fields T and M thus become very heavy, which causes them to decouple from the low-energy 
dynamics. In this limit, the deformed moduli constraint then eliminates the (auxiliary) field T as 
well as the field M , i.e. one complete chiral multiplet of mesonic DOFs. As already mentioned 
below Eq. (10), we shall work in exactly this limit in the following. We reiterate once more that 
this amounts to considering the field T as a mere undynamical Lagrange multiplier.8

Setting M to its VEV, 〈M〉 = 0, and using that 〈M+〉〈M−〉 = Λ2 for λT → ∞, we now have

Weff � λ+ΛM+Z− + λ−ΛM−Z+, (25)

where the charged meson fields M+ and M− are to be expanded around their VEVs as follows,

M+ = 〈M+〉eS, M− = 〈M−〉e−S = Λ2

〈M+〉e
−S = Λ2

M+
. (26)

This illustrates once more that the deformed moduli constraint is also satisfied on the level of 
the chiral superfields, M+M− = Λ2, and not only on the level of the scalar VEVs. In order to 
actually calculate 〈M+〉 and 〈M−〉, we need to minimize the F-term scalar potential resulting 
from Eq. (25) in combination with the D-term scalar potential in Eq. (19), while taking into 
account that M− = Λ2/M+ for all values of M+. Let us assume for a moment that 〈Z±〉 = 0
(we will justify this assumption further below in Section 2.4). We then find for the VEVs of the 
charged meson fields

〈|M±|2〉 = λ∓
λ±

Λ2
[

1 + g2

2

(
λ±
λ3∓

− λ∓
λ3±

)
+O

(
g4)]. (27)

As we are only interested in the limit of a weakly gauged U(1) symmetry, g � 1, we can safely 
neglect all higher-order corrections in g. In the generic case, we expect the Yukawa couplings 
λ+ and λ− to (at least slightly) differ from each other, λ+ = λ−, so that the VEVs of the two 
mesons M+ and M− do not (exactly) coincide, 〈M+〉 = 〈M−〉. According to Eq. (20), this then 
induces the following effective FI parameter,

ξ = Λ2
(

λ+
λ−

− λ−
λ+

)[
1 − g2

2

(λ2+ + λ2−)2

λ3+λ3−
+O

(
g4)]. (28)

8 From now on, we will therefore simply set FT = 0. This certainly does not limit the validity of our construction, 
because, even in the case of a dynamical field T , the F-term FT is typically subdominant. One can show that for not-too-
small λT , i.e. as long as λ2 > 2λ+λ− , it is in fact always smaller than the singlet F-terms, |FT | < |FZ±|.
T
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This expression is the main result of our paper. For given values of the Yukawa coupling 
constants λ+ and λ−, it is largest in the limit g → 0. This directly reflects the influence of 
the D-term scalar potential in Eq. (19) on the VEVs of the charged mesons. The D-term scalar 
potential drives these VEVs towards a common value, which results in a smaller ξ parameter, as 
soon as the D-term potential gains in importance. Moreover, we find that, for λ+ and λ− of O(1), 
the magnitude of the FI parameter is directly controlled by the dynamical scale, 

√|ξ | ∼ Λ, as 
anticipated. At the same time, the VEV of the auxiliary D field is suppressed by the small U(1)

gauge coupling constant, 〈D〉 = gξ ∼ gΛ2. This needs to be compared with the magnitude of 
the total F-term resulting from the effective superpotential in Eq. (25),〈|F |〉 ≡ √〈|FZ+|2〉 + 〈|FZ+|2〉 = exp

[
K0

2M2
Pl

]
μ2, K0 = 〈K〉, μ ≡ 4

√
2λ+λ−Λ, (29)

which is typically of the order of the dynamical scale, 〈|F |〉 ∼ Λ2. In the parameter region of 
interest, i.e. for a weakly gauged U(1) symmetry and a not-too-strong hierarchy among the 
Yukawa coupling constants λ+ and λ−, the effective D-term is hence always smaller than the 
IYIT F-term, 〈D〉 < 〈|F |〉, as expected, cf. also Eq. (5). Note, however, that in general the IYIT 
model or extensions thereof may potentially also be able to accommodate much larger D-terms, 
〈D〉 � 〈|F |〉, in case the U(1) gauge coupling is taken to a larger value, g ∼ λ±. But, as our 
above derivation of the ξ parameter in Eq. (28) is only self-consistent under the assumption of a 
small gauge coupling constant, g � λ±, we cannot make any further statement as to whether this 
is indeed the case or not. Instead, we leave a study of the IYIT model (or extensions thereof) in 
combination with a strongly gauged U(1) flavor symmetry to future work and keep on focusing 
on the weakly gauged scenario in the following. Just as in our analysis so far, we can then 
continue to treat the U(1) gauge interactions as a small perturbation to the Yukawa interactions 
encoded in the tree-level superpotential.

In summary, we conclude that the IYIT F-term 〈|F |〉, the FI parameter ξ as well as the effec-
tive D-term 〈D〉 are all related to the dynamical scale Λ of the strong SP(1) gauge interactions,

〈D〉/g ≡ ξ ∼ 〈|F |〉 ∼ Λ2. (30)

For completeness, we also mention that the dynamical scale Λ derives in turn, via the effect of 
dimensional transmutation, from the RGE running of the strong gauge coupling constant gs ,

Λ = MPl exp

[
− 8π2

bgs(MPl)

]
, b = 3(Nc + 1) − Nf , Nf = Nc + 1, (31)

with b denoting the beta-function coefficient for the SP(Nc) theory with Nf flavors and where 
we have assumed that the number of flavors does not change between the dynamical scale and 
the Planck scale. For Nc = 1, a strong gauge coupling constant of gs � 2.0 at the Planck scale 
then implies, for instance, a dynamical scale coinciding with the scale of grand unification,

Nc = 1, gs(MPl) � 2.0, Λ � ΛGUT � 2.0 × 1016 GeV. (32)

Likewise, varying the gauge coupling constant gs between, say, 1 and 4π , we are able to generate 
values of the dynamical scale Λ ranging over almost nine order of magnitude,

Nc = 1, gs(MPl) � 1..4π, Λ � 6.5 × 109 GeV..2.1 × 1018 GeV. (33)

Together, Eqs. (30) and (33) thus illustrate explicitly that our dynamical mechanism for the gen-
eration of an effective FI-term is capable of yielding ξ values in a much larger range than the 
conventional string construction based on the Green–Schwarz mechanism. This is a major ad-
vantage of our dynamical, field theory-based scenario.
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2.3. Consistent embedding into supergravity

In the above derivation of the effective FI parameter ξ , we solely worked in the limit of global 
SUSY and completely neglected all SUGRA effects. This immediately gives rise to two ques-
tions: (i) What are the quantitative changes in our result for the parameter ξ once we include 
higher-dimensional SUGRA corrections? And more importantly, (ii) are we at all allowed to 
couple our globally supersymmetric SP(1) model to SUGRA without running into such concep-
tional problems as we discussed them in the introduction? Assuming the answer to the second 
question is positive, the first question is easy to answer. Simply based on dimensional analysis, 
we expect all SUGRA corrections to our above expressions to be suppressed by at least one 
power of the ratio Λ/MPl. For not-too-large values of the dynamical scale, Λ � 10−1MPl, all 
SUGRA corrections are therefore well under control. In order to answer the second question, it 
is sufficient to note that the superpotential as well as the Kähler potential of our original high-
energy SP(1) theory are U(1) gauge-invariant by construction. The FZ-multiplet is therefore 
always well-defined along the entire RGE flow and we do not have to worry about any com-
plications when coupling our model to SUGRA. However, in order to make the virtues of our 
dynamical mechanism more explicit, it turns out to be useful to examine the Kähler potential of 
the low-energy effective theory in a bit more detail. More precisely, we shall now identify and 
discuss the analog of the Kähler potential KFI in Eq. (1) in our model.

The canonical Kähler potential for the meson fields M± in global SUSY is given as follows,

K = M
†
+e2gV M+ + M

†
−e−2gV M−. (34)

Parameterizing the fluctuations of M+ and M− around the low-energy vacuum as in Eq. (26), 
this Kähler potential can be written as

K = K0 + 2g
[〈|M+|2〉 − 〈|M−|2〉][V + 1

2g

(
S + S†)] + . . . , (35)

where K0 = 〈|M+|2〉 + 〈|M−|2〉 and with the ellipsis denoting higher-order terms in the linear 
combination V + (S + S†)/(2g). Of course, the prefactor of the above linear term is nothing but 
our effective FI parameter ξ , cf. Eq. (20). This leads us to identify KFI in our model with

KFI = −2gξ

[
V + 1

2g

(
S + S†)], (36)

which is of exactly the same form as the Kähler potential in Eq. (2) resulting from the Green–
Schwarz mechanism in string theory. First of all, this illustrates that the field S indeed represents 
in fact nothing else than the Goldstone multiplet associated with the spontaneous breaking of 
the U(1) symmetry, which renders the vector multiplet V massive via the (affine) Abelian Higgs 
mechanism, V → VM = V + (S + S†)/(2g). But more than that, the similarity between our KFI
in Eq. (36) and the stringy Kähler potential in Eq. (2) also shows that we are able to consistently 
couple our effective FI-term to SUGRA for the same reason as in string theory—in contrast to the 
Kähler potential in Eq. (1), our Kähler potential KFI in Eq. (36) does not violate the gauge invari-
ance of the FZ-multiplet. As the field S shifts under super-gauge transformations, S → S −2gΨ , 
it exactly compensates for the gauge shift in the vector field, V → V + Ψ + Ψ †. This renders 
KFI gauge-invariant, KFI → KFI, which ultimately also preserves the gauge invariance of the 
FZ-multiplet. The advantage of our dynamically generated FI-term compared to its stringy coun-
terpart, though, is that the modulus field, i.e. the real scalar DOF contained in S + S†, is always 
automatically stabilized by the SUSY-breaking F-terms arising in our strongly coupled theory. 
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Unlike in the case of the stringy modulus field Φ in Eq. (2), no extra mechanism is therefore 
required to stabilize S. In particular, thanks to the spontaneous breaking of SUSY, the mass of 
the field S always ends up being parametrically larger than the mass of the U(1) vector boson A. 
At energies below the SUSY breaking scale, but above the vector boson mass, our effective FI-
term hence manages to resemble a genuine, constant FI-term to very good approximation. Our 
dynamical mechanism is thus not only consistent in the context of SUGRA, but also appears to 
be very promising from a phenomenological point of view.

2.4. Mass spectrum and stabilization of the sgoldstino direction

To quantify the above statements about the mass of the field S and its relation to the vector 
boson mass, let us explicitly reformulate our SP(1) SUSY breaking model in terms of the Gold-
stone field S and the singlet fields Z+ and Z−. This will also allow us to eventually prove that 
Z+ and Z− are indeed stabilized around their origin, cf. the comment above Eq. (27). Using 
Eqs. (25), (26) and (27), the effective superpotential may be rewritten as,9

Weff � μ2[cosh(S)X − sinh(S)Y
]
, μ = 4

√
2λ+λ−Λ, (37)

where we have introduced the following two linear combinations of the fields Z+ and Z−,

X = 1√
2
(Z+ + Z−), Y = 1√

2
(Z+ − Z−). (38)

As evident from Eq. (37), for a generic value of the Goldstone field S, both X and Y possess 
nonvanishing F-terms. The sum of the absolute values squared of these F-terms then yields the 
scalar potential for the complex scalar contained in S,

VS = |FX|2 + |FY |2 = μ4 cosh(
√

2c), S = 1√
2
(c + iϕ). (39)

We hence find that c, the real component of the complex scalar in S, is stabilized at the origin, 
while ϕ, the imaginary component of the complex scalar in S, turns out to be a massless flat 
direction. This is consistent with the fact that ϕ is to be identified with the actual Goldstone 
phase that is absorbed by the U(1) vector field A upon the spontaneous breaking of the U(1)

symmetry. Owing to ordinary gauge invariance, we are then always allowed to shift ϕ to zero, so 
that the entire S multiplet vanishes, S = 0. This gauge choice corresponds to unitary gauge, in 
which S disappears from the superpotential, because it is eaten by the vector multiplet V .

In unitary gauge, the superpotential then takes the following, particularly simple form,

Weff � μ2X. (40)

To study the particle spectrum of our SP(1) theory in this gauge, one can no longer use the stan-
dard representation of the U(1) vector multiplet that is commonly employed in Wess–Zumino 
gauge. Instead, one needs to know the actual Lagrangian of our Abelian Higgs model in unitary 
gauge, which includes, inter alia, all interactions of the fields X and Y with the massive vector 
multiplet VM that are encoded in the Kähler potential. This Lagrangian has been derived and dis-
cussed in detail in Ref. [24]. Alternatively, we can, however, also simply keep the field S in the 

9 Unless stated otherwise, we will neglect all effects due to the U(1) gauge interactions in the following and simply 
work in zeroth order in the gauge coupling. Similarly as before, we will also neglect all SUGRA corrections.
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superpotential and perform all calculations in Wess–Zumino gauge. The conceptional difference 
between these two approaches then is that the Goldstone multiplet is regarded as a set of gauge 
DOFs in the former case, while it is regarded as a set of matter DOFs in the latter case. Of course, 
both approaches are guaranteed to lead to the same physical results by virtue of the Goldstone 
boson equivalence theorem. Based on the Lagrangian stated in Ref. [24], we have also confirmed 
the equivalence between both approaches by means of an explicit calculation.

For the purposes of the discussion in the present paper, we shall now continue our analysis in 
Wess–Zumino gauge. In doing so, we are free to focus, without loss of generality, on fluctuations 
of the Goldstone field around unitary gauge, S = 0. For S values close to 0, the superpotential in 
Eq. (37) can then be expanded in powers of S up to second order as follows

Weff � μ2
[
X − SY + 1

2
S2X +O

(
S3)]. (41)

Likewise, we may expand the Kähler potential in Eq. (34) up to second order in S. Setting the 
vector field to its VEV, 〈V 〉 = 0, we find the following non-holomorphic terms in K ,

K ⊃ K0
[
1 + |S|2 +O

(|S|4)], K0 =
(

λ−
λ+

+ λ+
λ−

)
Λ2. (42)

The field S thus does not possess a canonical kinetic term. In order to canonically normalize it, 
we have to perform a field redefinition, S → K

−1/2
0 S, such that

K → K0 + |S|2 +O
(|S|4),

Weff → μ2X − mSY + m2

2μ2
S2X +O

(
S3), (43)

with the mass parameter m being defined as,

m = μ2

K
1/2
0

= λhΛ, λh =
[

1

2

(
1

λ2+
+ 1

λ2−

)]−1/2

, (44)

where λh denotes the positive square root of the harmonic mean of λ2+ and λ2−. Again, we can 
immediately infer several important results simply from the form of the superpotential.

(i) The O’Raifeartaigh-like structure of the superpotential is clearly evident. The field X even-
tually turns out to be the only field with a nonvanishing F -term.10 Hence, in unitary gauge, 
it directly corresponds to the goldstino multiplet associated with the spontaneous breaking of 
SUSY, cf. also Eq. (40). The complex scalar contained in X, the sgoldstino field, is typically 
very light at tree level, which is why it represents what may be referred to as a pseudomodu-
lus. The only contributions to its tree-level mass originate from higher-dimensional operators 
in the Kähler potential and are thus expected to be very small. At the same time, the fermionic 
component of X, the initially massless goldstino field x̃, is eaten by the gravitino upon the spon-
taneous breaking of SUSY, representing its longitudinal DOFs thereafter. Hence, the mass of the 
goldstino x̃ eventually ends up corresponding to the gravitino mass m3/2,

mx̃ ≡ m3/2 = exp

[
K0

2M2
Pl

]
W0

M2
Pl

, W0 = 〈W 〉. (45)

10 According to Eq. (41), 〈S2〉 = −2 appears, in fact, to represent a viable vacuum configuration as well. In this vacuum, 
FX would then vanish and SUSY would instead be broken by the F-term belonging to the field Y . However, this is a 
fallacy, since Eq. (41) only holds in the limit of a small VEV for the Goldstone field, S � 1.
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Here, W0 denotes a constant in the superpotential that is generated in the course of spontaneous 
R symmetry breaking at high energies. It is tuned against the total SUSY breaking scale ΛSUSY

in the scalar potential, so as to realize an almost vanishing cosmological constant in the true vac-
uum.11 This tuning implies the following phenomenological relation between m3/2 and ΛSUSY,

m3/2 = Λ2
SUSY√
3MPl

, Λ2
SUSY =

√〈|Ftot|2
〉 + 1

2

〈
D2

〉
. (46)

Note that the above |Ftot| does not necessarily need to coincide with the IYIT F-term |F | in 
Eq. (29), since additional hidden sectors might still provide further sources of F-term-driven 
SUSY breaking. For our purposes, we can therefore treat the gravitino mass as a free param-
eter, which may or may not be determined by the dynamical scale in the strongly coupled 
sector.

For now, we would like to stress only two points: First, if there should be no further sources 
of SUSY breaking except for those coming from our strongly coupled sector, the SUSY break-
ing scale ΛSUSY is also determined by the dynamical scale Λ. On the other hand, in presence 
of additional sources of SUSY breaking, Λ represents a lower bound for ΛSUSY, cf. also 
Eq. (30),

ΛSUSY �
〈|F |〉 ∼ ξ ∼ Λ, m3/2 �

Λ2

√
3MPl

. (47)

Therefore, if we really aim at generating a ξ value of the order of ΛGUT, we automatically 
let ourselves in for an extremely large SUSY breaking scale. In the case of such a large scale 
ΛSUSY, all effects of SUSY decouple from low-energy physics and we could have no hope 
to solve any problems of the standard model by means of SUSY—this may or may not be 
regarded as a drawback. Alternatively, we may simply envision the dynamical generation of 
an effective ξ parameter of a much smaller magnitude. Then, also the SUSY breaking scale 
might end up lying in a phenomenologically more attractive range. Our second comment per-
tains the gravitino mass. Without any extra sources of SUSY breaking present, we know that 
m3/2 takes a value of O(Λ2/MPl), cf. Eq. (46). All SUGRA corrections proportional to m3/2 in 
our above analysis are then be suppressed by the ratio Λ/MPl. This is exactly what we already 
estimated simply based on dimensional analysis at the beginning of Section 2.3. For further 
comments on the mediation of SUSY breaking to the visible sector in our dynamical model, cf. 
Section 4.1.

(ii) The singlet field Y shares a large supersymmetric Dirac mass term with the Goldstone 
field S. Both fields are hence stabilized around the origin, 〈Y 〉 = 〈S〉 = 0. Here, the fact that the 
linear combination Y = (Z+ − Z−)/

√
2 vanishes incidentally implies that the singlet fields Z+

and Z− are bound to take the same value in the true vacuum, 〈Z+〉 = 〈Z−〉, independently of the 
actual VEV of the linear combination X = (Z+ + Z−)/

√
2. Interestingly enough, this means 

that the contributions from the VEVs of the fields Z+ and Z− to the expectation value of the 
auxiliary D field, 〈D〉 ⊃ g(〈|Z−|2〉 − 〈|Z+|2〉), must necessarily cancel.

11 In Ref. [21], we will present an extension of our general SP(Nc) model, based on the idea of conformal SUSY 
breaking [25], that incorporates a dynamical explanation for this fine-tuning at least at the classical level.
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Upon closer inspection, we find that the two chiral fields S and Y give in fact rise to four real 
scalar as well as to two fermionic mass eigenstates,12

{S,Y }bosonic DOFs → {c,ϕ, y−, y+}, {S,Y }fermionic DOFs → {s̃, ỹ}. (48)

Almost all of these fields possess an effective mass that depends on the complex scalar contained 
in the field X. Around the origin, i.e. at 〈S〉 = 〈Y 〉 = 0, we find for the effective masses squared

m2
c = m2

[
3

2
+ m2

2μ4
|X|2 +

(
1

4
+ 3m2

2μ4
|X|2 + m4

4μ8
|X|4

)1/2]
, m2

ϕ = 0,

m2
y− = m2

[
3

2
+ m2

2μ4
|X|2 −

(
1

4
+ 3m2

2μ4
|X|2 + m4

4μ8
|X|4

)1/2]
,

m2
y+ = m2 + m4

μ4
|X|2,

m2
s̃ = m2

[
1 + m2

2μ4
|X|2 +

(
m2

μ4
|X|2 + m4

4μ8
|X|4

)1/2]
,

m2
ỹ = m2

[
1 + m2

2μ4
|X|2 −

(
m2

μ4
|X|2 + m4

4μ8
|X|4

)1/2]
. (49)

Here, m2
s̃

and m2
ỹ

are understood to denote the Majorana masses for the two Majorana fermions 
s̃ and ỹ at X = 0. On the other hand, at X = 0, the fermions s̃ and ỹ share a common mass 
m, so that they can be regarded as forming a Dirac fermion together. More generally speaking, 
evaluated at X = 0, the effective masses in Eq. (49) reduce to the following vacuum masses,

X = 0 : m2
c = 2m2, m2

ϕ = 0, m2
y− = m2

y+ = m2, m2
s̃ = m2

ỹ = m2. (50)

As already mentioned below Eq. (39), the Goldstone phase ϕ turns out to be exactly massless 
and the real scalar c receives a large mass and is thus stabilized at the origin, 〈c〉 = 0. Here, 
the scalar c corresponds to the real scalar in the massive vector multiplet VM ∼ (c, λ, ̃s, A) in 
unitary gauge. In addition, it plays the role of the real scalar modulus field in our construction 
of the effective FI-term in Eq. (36). As anticipated in Section 2.3, we now see explicitly that 
is indeed always automatically stabilized due to the F-term-driven SUSY breaking inherent in 
our superpotential. In particular, for a weakly gauged U(1) symmetry, its F-term-induced mass 
always easily satisfies the constraint formulated in the introduction, cf. Section 1.2,

mc ∼ λhΛ � g
√|ξ | ∼ gΛ, (51)

which guarantees that the effective FI parameter ξ is not inadvertently absorbed by the VEV 
of the field c. Unlike in the case of string theory, we therefore do not have to invoke any sep-
arate mechanism to stabilize the modulus field. The dynamical stabilization of the modulus is 
already built into our model. Furthermore, the modulus mass is not directly tied to the grav-
itino mass, which leaves more freedom in the construction of realistic scenarios. In fact, barring 
additional sources of SUSY breaking, m3/2 is typically much smaller than the modulus mass, 

12 The mixing between the DOFs contained in S and Y vanishes for X = 0. At X = 0, we then have S ∼ (c, ϕ, ̃s) and 
Y ∼ (y−, y+, ̃y). In the rigid limit, X vanishes in the true vacuum (as we will see shortly) and, hence, the role of the 
Goldstone multiplet is exclusively played by the field S. In SUGRA, however, 〈X〉 turns out to be of O(m3/2), so that 
the Goldstone DOFs end up corresponding to linear combinations of the DOFs in S and Y .
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m3/2 ∼ Λ2/MPl � mc , cf. Eq. (46). These results regarding the scalar field c represent defi-
nite advantages of our dynamically generated FI-term over the stringy construction based on the 
Green–Schwarz mechanism.

The masses of the scalar c as well as of the Majorana fermion s̃ now need to be compared 
with the masses of the vector boson A as well as of the gaugino λ. To compute these masses, we 
simply have to inspect the Kähler potential in Eq. (35), which can also be written as

K = K0 − 2gξVM + m2
V V 2

M +O
(
V 3

M

)
,

VM = V + 1√
2mV

(
S + S†), m2

V = 2g2K0. (52)

As expected, we thus find that the vector boson A acquires a mass mA ≡ mV ∼ gΛ. With respect 
to the gaugino λ, things are a little bit more complicated. Next to the mass for the vector boson A, 
the Kähler potential in Eq. (52) also induces a Dirac mass for the two fermions λ and s̃. Together 
with the Dirac mass m for s̃ and ỹ, cf. Eq. (50), and in the rigid limit, this then results in three 
mass eigenstates with the following tree-level masses in the true vacuum,

X = 0 : m2
λ = 0, m2

s̃ = m2
ỹ = m2 + m2

V � m2. (53)

At X = 0, the fermions s̃ and ỹ therefore form a Dirac fermion with mass m, while the gaugino 
λ turns out to be a Majorana fermion with vanishing tree-level mass. Here, the masslessness of 
the gaugino is a direct consequence of fermion number conservation: at X = 0, the Lagrangian 
only contains Dirac mass terms for the three Weyl fermions ỹ, s̃ and λ and no fermion number-
violating Majorana mass terms. One of these three fermions therefore needs to end up being a 
massless Majorana fermion, which, in our case, is the gaugino λ. The origin of the fermion num-
ber conservation is, in turn, the continuous global R symmetry of the IYIT superpotential in the 
rigid limit, cf. Eq. (13), which forbids any Majorana mass terms in the fermionic Lagrangian.

This picture of the fermionic mass eigenstates, however, receives corrections from gravita-
tional interactions. In the full, locally supersymmetric case, the value of the field X in the true 
vacuum does not vanish, but is rather of O(m3/2). This induces a mass splitting �m2 between 
the fermions s̃ and ỹ of O(±mm3/2), cf. Eq. (49), such that they end up representing independent 
Majorana fermions after all. At the same time, the gaugino λ and the fermion ỹ acquire a common 
Dirac mass mλỹ ∼ g〈X〉 ∼ gm3/2 in SUGRA via the supersymmetric gaugino-fermion-scalar 
U(1) gauge interactions. After diagonalizing the fermion mass matrix, this eventually gives rise 
to a Majorana mass mλ ∼ mV /mmλỹ ∼ g2/λhm3/2 for the gaugino mass eigenstate. Thus, the 
gaugino is, in fact, not exactly massless. In summary, we conclude that the spontaneous breaking 
of SUSY in our IYIT superpotential turns out to be responsible for a large mass splitting within 
the massive vector multiplet VM ∼ (c, λ, ̃s, A),

mλ ∼ g2

λh

m3/2, mA ∼ gΛ, ms̃ ∼ mc ∼ λhΛ, mλ � mA � ms̃ ∼ mc. (54)

In view of this result, two comments are in order. First, for a small gauge coupling constant g, 
the U(1) gaugino λ turns out to be the lightest particle in the spectrum of our SP(1) theory. 
In concrete phenomenological applications of our scenario, it might therefore be worthwhile to 
have a careful look at the role played by the gaugino. Under certain circumstances, it may perhaps 
play the role of dark matter; in other cases, its low mass may be used to place constraints on the 
dynamical scale Λ and/or the SUSY breaking scale ΛSUSY. Second, at intermediate energies 
E in between the two mass scales mV and m, the Goldstone multiplet S can be integrated out, 
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while the gaugino and the vector boson are still light. At such energies, our effective FI-term then 
resembles a genuine, constant FI-term to very good approximation,

mV � E � m : KFI ≈ −2gξV . (55)

After having succeeded in generating an effective FI parameter ξ by means of strong dynamics in 
Section 2.2, cf. Eq. (28), this observation is now the second main result of our paper. Remarkably 
enough, our dynamical FI-Term indeed bears the potential to imitate a constant FI-term.

(iii) We have already seen that the field Y is stabilized at zero. Hence, we have halfway 
proven that the VEVs of the fields Z+ and Z− indeed vanish. What remains to be done, though, 
is to show that, in the rigid limit, also the complex scalar contained in X, i.e. the sgoldstino, is 
stabilized at the origin. To do so, we first point out that the effective superpotential in Eq. (43)
now also features a Yukawa interaction between the goldstino field X and the Goldstone field S
that is quadratic in S. This Yukawa interaction induces an effective potential at one-loop that lifts 
the pseudoflat sgoldstino direction—the Goldstone multiplet associated with the spontaneous 
breaking of the U(1) symmetry therefore stabilizes the sgoldstino direction associated with the 
spontaneous breaking of SUSY at the loop level. In order to explicitly calculate the sgoldstino 
mass mX , we need to evaluate and differentiate the one-loop Coleman–Weinberg potential [26],

VCW = 1

64π2
STrM4 ln

[M2

Q2

]
, m2

X = ∂2VCW

∂X∂X∗

∣∣∣∣
X=0

. (56)

Here, Q denotes an appropriate renormalization scale and M2 is the direct sum of the scalar and 
fermionic mass matrices squared. It contains in particular the six sgoldstino-dependent scalar 
and fermion masses in Eq. (49). Evaluating the Coleman–Weinberg potential by brute force, we 
obtain the following positive sgoldstino mass squared at the origin,13

m2
X = 2 ln 2 − 1

16π2

(
m

μ

)4

m2 = 2 ln 2 − 1

32π2

(
λh

λg

)2

λ4
hΛ

2 = 2 ln 2 − 1

4π2

λ5+λ5−
(λ2+ + λ2−)3

Λ2, (57)

where we have introduced λg to denote the positive square root of the geometric mean of λ2+
and λ2−, cf. also Eq. (44). This result is independent of the renormalization scale Q and, more 
importantly, it is consistent with the expression found by the authors of Ref. [27] in the flavor-
symmetric limit, in which all Yukawa couplings λij are taken to be equal.14 To see this explicitly, 
note that in Ref. [27] the parameters m and μ are given as m = λΛ and μ = λ1/2Λ, with λ being 
the universal Yukawa coupling. Setting m and μ in Eq. (57) to these values, m2

X turns into

m2
X = 2 ln 2 − 1

16π2
λ4Λ2. (58)

This result is smaller than the corresponding expression in Ref. [27] by a factor of 5, since, in 
contrast to Ref. [27], we have initially decided, for simplicity, to decouple the four neutral meson-
singlet pairs (M0

a , Z0
a) from the SUSY breaking dynamics of the charged fields (M±, Z±). 

Moreover, the fact that we eventually find m2
X to be positive is not a coincidence. It is rather an 

implication of the global U(1)R symmetry of the superpotential in Eq. (43). This follows from a 
general theorem regarding the sgoldstino mass proven in Ref. [28], which states the following: 

13 The first derivative of VCW w.r.t. X vanishes. X = 0 is therefore indeed a local extremum of VCW.
14 A comparison in the case of different Yukawa couplings is not feasible, as the corresponding expression in Ref. [27]
unfortunately contains a few typos. It is, for instance, not of the correct mass dimension.
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Any SUSY breaking model of the O’Raifeartaigh type in which all chiral fields either carry R
charge 0 or 2 is bound to lead to a positive mass squared for the pseudoflat direction. Given that 
the fields S, X and Y in Eq. (43) carry U(1)R charges 0, 2 and 2, respectively, this sufficient 
condition is evidently fulfilled in our case. The positive sign of m2

X in Eq. (57) is, hence, nothing 
but a consequence of the global U(1)R symmetry and our specific R charge assignment.

In addition to the loop-induced positive mass squared in Eq. (57), the sgoldstino mass also 
receives a further, uncalculable contribution from higher-dimensional operators in the Kähler 
potential that are induced by strong-coupling effects [27]. For not-too-large Yukawa couplings, 
λ± � 4π , this contribution is, however, subdominant. Finally, we therefore conclude that the 
sgoldstino does not destabilize the vacuum. Instead, it is safely stabilized around the origin, 
〈X〉 = 0. This completes our proof that both singlet fields Z+ and Z− are indeed stabilized at the 
origin and justifies a posteriori our derivation of the effective FI parameter in Section 2.2.

3. Generalizations

3.1. Dynamical D-terms based on SP(Nc) dynamics

While we have introduced the IYIT model of dynamical SUSY breaking for an arbitrary 
number of colors, Nc ≥ 1, in Section 2.1, we have thereafter only focused on the minimal case 
of an SP(1) gauge theory in the remainder of Section 2. The generalization of our dynamical 
mechanism for the generation of an effective FI-term to larger numbers of colors is, however, 
straightforward. In this section, we will therefore only briefly summarize how the main results 
found in the previous chapter translate to the more general case of strongly coupled SP(Nc)

dynamics.
For a larger number of colors, Nc ≥ 2, the tree-level superpotential of the IYIT model in 

Eq. (12) exhibits not only one, but several anomaly-free global U(1) flavor symmetries. Each 
of these symmetries is equally suited to be used for the construction of a nonvanishing FI-term. 
After weakly gauging a particular U(1) flavor symmetry of the tree-level superpotential, we then 
have to supplement the F-term potential with a corresponding U(1) D-term potential. In the 
low-energy effective theory, this D-term potential takes the following form, cf. Eq. (19),

VD = 1

2
D2 = g2

2

[
n∑

a=1

qa

(|Ma|2 − |Za|2
)]2

,

n∑
a=1

qa =
n∑

a=1

q3
a = 0, (59)

where we use a = (i, j) as a collective index to label the n = Nf (2Nf − 1) different pairs of 
meson-singlet charge eigenstates present at low energies. In order to calculate the expectation 
value of the auxiliary D field in the true vacuum, we again need to compute the VEVs of the 
meson and singlet fields. Just as in the minimal SP(1) case, all singlet fields turn out to be 
stabilized at zero. This also includes the sgoldstino direction, which again receives a sufficiently 
large mass at the loop level. To facilitate our analysis of the meson VEVs, we again assume a 
particular hierarchy among the Yukawa coupling constants λij , such that all mesons Mij with 
|i − j | = 1 vanish in the true vacuum. This renders Mij an antisymmetric tridiagonal matrix,

Mij = MαJ ij , α = (2i − 1,2i), α = 1,2, ..,Nf , (60)

where the J ij represent the entries of the symplectic form J = 1Nf
⊗ iσ2. Here, 1Nf

stands for 
the Nf -dimensional unit matrix and σ2 is the second Pauli matrix. The form J is constructed 
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such that it has unit Pfaffian, Pf(J ) = 1. Making use of this ansatz, the F-term potential deriving 
from the superpotential in Eq. (13) is then minimized by the following nonzero VEVs,

〈|Mα|2〉1/2 = λg

λα

Λ +O
(
g2), λg =

Nf∏
α=1

λ
1/Nf
α , (61)

with λg denoting the geometric mean of the Yukawa couplings λ12, λ34, .., λ2Nf −1,2Nf
, Also, 

note that now we are completely neglecting all corrections to the meson VEVs coming from the 
U(1) gauge interactions. Inserting the meson VEVs in Eqs. (60) and (61) into the superpotential 
in Eq. (13), we are then able to identify the goldstino field X,

Mij → λg

λij

ΛJ ij , Weff → μ2X, μ2 = N
1/2
f λgΛ

2, X = 1

N
1/2
f

Nf∑
α=1

Zα, (62)

which generalizes the corresponding expressions found in the previous chapter, cf. Eqs. (37), 
(38) and (43). Similarly, plugging the meson VEVs into the D-term potential in Eq. (59), allows 
us to deduce the generalized expression for the FI parameter ξ , cf. Eq. (28),

ξ = −
n∑

a=1

qa

〈|Ma|2
〉 = −λ2

gΛ
2

Nf∑
α=1

qα

λ2
α

+O
(
g2). (63)

For generic Yukawa coupling constants λα , we hence find again a nonzero effective FI-term, the 
magnitude of which is determined by the dynamical scale, ξ ∼ Λ2. The corresponding effective 
D-term 〈D〉 is therefore again suppressed compared to the IYIT F-term 〈|F |〉, cf. Eq. (30),〈|F |〉 � μ2 ∼ Λ2 � 〈D〉 ≡ gξ ∼ gΛ2. (64)

The fluctuations of the meson fields with nonzero VEV around the low-energy vacuum, cf. 
Eq. (61), can be parametrized in a similar way as in Eq. (22). Schematically, we have

Mα =Oαβ(S1, S2, .., SNf −2)
1

λβ

[λgΛ + M]eqβS0 , (65)

with M and S0 denoting two chiral superfields of mass dimension 1 and 0, respectively, and 
where O is an element of SO(Nf , C)/[SO(Nf − 1, C) × U(1)C], which is uniquely determined 
in terms of the Nf − 2 superfield-valued phases S1, S2, .., SNf −2. The field M couples again to 
the Lagrange multiplier T and hence decouples in the limit of a large Yukawa coupling λT , i.e. 
once we enforce the deformed moduli constraint to be fulfilled exactly. Meanwhile, the field S0
can again be identified as the Goldstone multiplet that renders the U(1) vector field V massive 
upon the spontaneous breaking of the U(1) symmetry. From its interaction with the singlet fields 
Zα in the superpotential, it acquires a supersymmetric Dirac mass m, which directly generalizes 
the mass parameter m introduced in Section 2.4, cf. Eq. (44),

m = λhΛ, λh =
[

1

Nf

Nf∑
i=1

q2
α

λ2
α

]−1/2

. (66)

Hence, the real modulus field c ∈ S0, which appears in our construction of the effective FI-term 
in the Kähler potential, cf. Eq. (36), is again parametrically heavier than the vector boson A,
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m2
A ≡ m2

V = 2g2λ2
gΛ

2
Nf∑
i=1

q2
α

λ2
α

. (67)

At energies E in between the mass scales m and mV , our effective FI-term in Eq. (63) therefore 
resembles once again a genuine, constant FI-term, cf. Eq. (55). In summary, we thus conclude 
that all of our main results derived in the special case of an SP(1) theory readily carry over to 
the general scenario of strongly interacting SP(Nc) dynamics. This illustrates that our dynamical 
mechanism for the generation of an effective FI-term, which we introduced in Section 2 only by 
reference to the simplest case of strongly coupled SP(1) dynamics, does, in fact, not depend on 
any peculiarities of the IYIT model in its minimal realization. Instead, it is applicable in the full 
IYIT model for an arbitrary number of colors.

3.2. Dynamical D-terms based on SU(Nc) dynamics

The results of the previous section immediately entail the question whether our dynamical 
mechanism could possibly also be implemented in other models of dynamical SUSY breaking. 
In this section, we shall briefly demonstrate that, properly taking into account gravitational cor-
rections, it actually turns out to be impossible to dynamically generate an effective FI-term in 
the context of DSB models based on SU(Nc) dynamics. This will help us formulate a general 
requirement pertaining the structure of candidate DSB models that needs to be satisfied, so that 
there is a chance of successfully accommodating an effective FI-term in the full SUGRA theory. 
The concrete investigation of further alternative DSB models is left for future work.

The generalization of the IYIT model to SU(Nc) dynamics is based on supersymmetric QCD 
(SQCD) with Nf = Nc flavors [29]. Here, we will only consider Nc values larger than 2, as 
the SU(2) theory is equivalent to the SP(1) theory discussed in Section 2. Now, every flavor is 
comprised of a pair of a chiral quark and a chiral antiquark field, Qi and Q̄ı̄ , which transform in 
the fundamental and antifundamental representations of SU(Nc), respectively. The DOFs of the 
low-energy effective theory correspond to a set of N2

f + 2 gauge-invariant composite fields: N2
f

mesons Mij̄ as well as a baryon B and an antibaryon B̄,

Mij̄ = QiQ̄j̄

Λ
, B = εi1i2..iNc

Qi1Qi2 ..QiNc

ΛNc−1
, B̄ = εı̄1 ı̄2..ı̄Nc

Q̄ı̄1Q̄ı̄2 ..Q̄ı̄Nc

ΛNc−1
, (68)

which are again subject to a quantum mechanically deformed moduli constraint [23],

BB̄ + det(Mij̄ )

ΛNc−2
= Λ2. (69)

In this theory, we can again spontaneously break SUSY via the O’Raifeartaigh mechanism by 
coupling the 2Nf fundamental high-energy DOFs, i.e. the quark and antiquark fields Qi and Q̄ı̄ , 
to N2

f + 2 singlet fields, Zij̄ , Z0 and Z̄0, in the tree-level superpotential. At low energies, this 
then results in the following effective superpotential of the O’Raifeartaigh type,

Weff � λT T

[
BB̄ + det(Mij̄ )

ΛNc−2
− Λ2

]

+ λij̄ΛZij̄M
ij̄ + κ

(
Λ

MPl

)Nc−2

ΛZ0B + κ̄

(
Λ

MPl

)Nc−2

ΛZ̄0B̄, (70)

where λij̄ , κ and κ̄ denote dimensionless, nonzero Yukawa couplings of O(1), which we take to 
be real for simplicity. Likewise, λT denotes again the normalization of the Lagrange constraint 
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term, by means of which we implement the deformed moduli constraint into the superpotential. 
Just as for our SP(Nc) theories, we assume λT to be the largest coupling in the problem. In the 
low-energy vacuum of the F-term potential, all meson fields vanish and the deformed moduli 
constraint ends up being satisfied due to nonzero VEVs for the baryon and the antibaryon field,

Mij̄ = 0,
〈|B|2〉1/2 = κg

κ
Λ,

〈|B̄|2〉1/2 = κg

κ̄
Λ, κg = √

κκ̄. (71)

The SUSY breaking dynamics of the general SU(Nc) theory are hence very similar to the corre-
sponding dynamics of the SP(1) model discussed in Section 2. Here, B and B̄ simply play the 
role of M+ and M−, while Z0 and Z̄0 correspond to Z+ and Z−. If we now weakly gauge a 
U(1) flavor symmetry of the effective superpotential, the VEVs of the composite states in the 
low-energy effective theory in Eq. (71) result in an effective FI parameter ξ of the following 
form,

ξ = −qB

[〈|B|2〉 − 〈|B̄|2〉] = qBκ2
gΛ2

(
1

κ̄2
− 1

κ2

)
, (72)

where qB is the charge of the baryon B under the weakly gauged U(1) symmetry in question. 
Likewise, plugging the VEVs in Eq. (71) into Eq. (70), we find the effective superpotential of 
our SU(Nc) theories in unitary gauge, which turns out to be very similar to the corresponding 
effective superpotential that we found in the SP(1) case, cf. Eq. (40),

Weff � μ2X, X = 1√
2
(Z0 + Z̄0), μ2 = √

2κκ̄

(
Λ

MPl

)Nc−2

Λ2. (73)

The crucial difference w.r.t. the SP(1) model is that, now, μ2 � Λ2
SUSY is suppressed by at least 

one power of the ratio Λ/MPl compared to the dynamical scale squared. As we shall demonstrate 
in the following, this renders the effective FI parameter ξ in Eq. (72) inconsistent.

The main obstacle to the successful generation of an effective FI-term turns out to be the 
stabilization of the scalar component of the goldstino field, i.e. of the pseudomodulus X, taking 
into account gravitational corrections. To leading order in the inverse Planck mass, 1/MPl, the 
one-loop corrected potential for the sgoldstino field X in SUGRA is given as

V eff
X = (

m2
X − 2m2

3/2

)|X|2 − 2m3/2μ
2(X + X∗) +O

(
M−2

Pl

)
, (74)

where mX denotes the effective sgoldstino mass induced at one loop. According to our analysis 
in Section 2.4 and given the expression for the SUSY breaking parameter μ in Eq. (73), it is now 
severely suppressed by a large power of the ratio Λ/MPl,

m2
X ∼ 1

16π2

(
m

μ

)4

m2 ∼ κ4

16π2

(
Λ

MPl

)4(Nc−2)

Λ2. (75)

At the same time, the gravitino mass m3/2 is also affected by the suppression of the μ parameter,

m2
3/2 � μ4

3M2
Pl

∼ κ2
(

Λ

MPl

)2(Nc−1)

Λ2. (76)

But for Nc ≥ 3 colors, m3/2 still ends up being larger than the loop-induced effective mass mX,

mX ∼ κ
(

Λ
)Nc−3

. (77)

m3/2 4π MPl
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In all SU(Nc) theories with Nc ≥ 3 colors, the scalar potential for the sgoldstino field X is 
therefore negatively curved to leading order in 1/MPl, cf. Eq. (74). This drives X to a large 
VEV around the Planck scale, 〈|X|〉 ∼ MPl, which eventually only becomes stabilized due to 
higher-dimensional SUGRA corrections in the scalar potential. Such a large sgoldstino VEV 
is, however, fatal from the perspective of our dynamical mechanism for the generation of an 
effective FI-term as well as from the perspective of the entire SU(Nc) DSB model.

First of all, it is inconsistent with our above derivation of the ξ parameter in Eq. (72), in 
which we assumed that 〈X〉 = 〈Z0〉 = 〈Z̄0〉 = 0. But more than that, the fact that field X is 
a linear combination of U(1) charge eigenstates implies that, now, the U(1) flavor symmetry 
is spontaneously broken at the Planck scale. The U(1) vector field V thus acquires a mass of 
O(MPl), such that it completely decouples from all low-energy physics. Our low-energy effec-
tive SUGRA theory therefore no longer features any U(1) gauge interactions and there is no 
longer any D-term potential that could possibly contain an effective FI-term. Moreover, as far as 
the SU(Nc) DSB model itself is concerned, we are now facing a twofold Polonyi problem [30]. 
During the stage of cosmic inflation, both the real and the imaginary part of the complex sgold-
stino field are stabilized by means of a Hubble-induced mass at field values that tend to be a 
distance of O(MPl) away from the true vacuum at 〈|X|〉 ∼ MPl. At the end of inflation, both 
real scalar fields hence begin to oscillate around the true vacuum with very large initial ampli-
tudes. The subsequent decay of these oscillations then results in disastrous amounts of entropy 
production, which threatens the successful generation of the baryon asymmetry of the universe 
as well as primordial nucleosynthesis. To avoid such catastrophic consequences, the SU(N)c
DSB model needs to be supplemented with a (dynamical) mechanism for the stabilization of the 
two real scalar DOFs contained in X. The minimal setup discussed above lacks such a mecha-
nism.

In conclusion, we therefore find that our SU(Nc) theories, while they represent viable mod-
els of dynamical SUSY breaking in the rigid limit, are not suited for the generation of an 
effective FI-term. In addition, the SUSY breaking dynamics themselves are endangered and 
serious cosmological problems arise once gravitational corrections are properly taken into ac-
count. The origin of all these problems can be traced back to the suppression of the SUSY 
breaking scale, μ � ΛSUSY, in the superpotential. We expect that similar problems arise in ev-
ery DSB model in which the nonzero F-terms responsible for SUSY breaking originate from 
higher-dimensional operators in the superpotential, i.e. in which the SUSY breaking scale is sup-
pressed by powers of the ratio Λ/MPl. A natural possibility to avoid the resultant theoretical 
and phenomenological problems is then to focus on DSB models in which SUSY breaking is 
driven by relevant or marginal operators in the Lagrangian. Here, the SP(Nc) models discussed 
in the present paper represent a prime example of DSB models that fulfill exactly this require-
ment.

4. Applications

In the two previous sections, we have presented and discussed in detail our dynamical mech-
anism for the generation of an effective FI-term in vector-like models of dynamical SUSY 
breaking. After having thus completed our field-theoretic analysis, we shall now briefly com-
ment on possible phenomenological applications of our effective FI-terms in realistic models. 
Here, we shall sketch in particular possible consequences of a nonvanishing FI-term for the me-
diation of SUSY breaking to the visible sector, cf. Section 4.1, as well as for cosmic inflation, cf. 
Section 4.2.
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4.1. Mediation of supersymmetry breaking to the visible sector

Together with the choice of the mediation mechanism, the VEVs of the F- and D-terms set 
the scale of the soft masses in the low-energy effective theory. SUSY breaking will be mediated 
from the hidden to the visible sector at least by gravitational interactions. In this case, expanding 
the SUGRA scalar potential around the vacuum leads to soft masses for the MSSM scalars,15

VF + VD = eK/M2
Pl

(
Kij̄DiWDj̄W − 3

|W |2
M2

Pl

+ e−K/M2
Pl

1

2
D2

)

= eK0/M
2
Pl

( |W0|2
M4

Pl

|φi |2 − 1

2

〈D2〉
M2

Pl

|φi |2
)

+O
(|φi |4

) + . . . , (78)

The first term in parenthesis is the familiar contribution from F-term SUSY breaking,

(
mF

0

)2 = eK0/M
2
Pl

|W0|2
M4

Pl

= m2
3/2 = Λ4

SUSY

3M2
Pl

, Λ4
SUSY = 〈|Ftot|2

〉 + 1

2

〈
D2〉, (79)

whereas the second term yields tachyonic contributions to the scalar masses,

(
mD

0

)2 = −1

2

〈D2〉
M2

Pl

eK0/M
2
Pl . (80)

Note that, in this setup, the MSSM scalars do not enter VD . The mass contribution in Eq. (80)
is rather a direct consequence of the requirement of a Minkowski vacuum, i.e. of requiring the 
parenthesis in the first line of Eq. (78) to vanish. However, contrary to the case of pure D-term 
mediation, these tachyonic contributions do not endanger the stability of the MSSM vacuum, 
since 〈|F |〉 > 〈D〉 in the parameter range of interest. The MSSM gauginos remain massless at 
this order in 〈|F |〉/MPl, since the nonvanishing U(1) gauge charges of Z+ and Z− do not allow a 
direct coupling between the goldstino field X = (Z+ +Z−)/

√
2 and the gauginos. Moreover, the 

R symmetry-conserving D-terms will not contribute to (R-violating) gaugino masses. In sum-
mary, in this minimal setup and in absence of any further SUSY breaking sector, both the MSSM 
scalars and the gravitino, cf. Eq. (46), obtain masses of O(Λ2/MPl). For a value of the dynamical 
scale Λ around the GUT scale, ΛGUT ∼ 1016 GeV, this implies masses of about 1014 GeV and 
hence a complete decoupling from the standard model spectrum. This can, however, be avoided 
by simply lowering the value of the dynamical scale Λ (which translates into a smaller value of 
the strong coupling constant gs at the Planck scale).

The soft masses discussed above can be enhanced by adding gauge mediation, i.e. by adding 
messenger particles which transform under GGUT ⊃ SM and which couple to X and FX (F-term 
gauge mediation) or are charged under the U(1) symmetry (D-term gauge mediation). The for-
mer will yield positive contributions to the squared masses of the scalars, which are suppressed 
by the messenger scale instead of the Planck scale and which hence stabilize the scalars. As 
for the MSSM gauginos, only suppressed masses are induced by F-term gauge mediation [32]. 
Meanwhile, D-term gauge mediation yields scalar mass contributions of the following form [33],

m
D,GM
0 ∼ α

4π

〈D2〉
Λ3

∼ αg2

4π
Λ, (81)

15 Here, following the notation of Ref. [31], DiW = ∂W/∂φi + M−2W∂K/∂φi .
Pl
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where α denotes the coupling strength of the standard model gauge group at the GUT scale. 
Unfortunately, the sign of this contribution is incalculable due to the strong dynamics involved 
in the hidden sector. Furthermore, R symmetry-breaking gaugino condensation in the strongly 
coupled sector can yield nonvanishing masses for the MSSM gauginos,

m
D,GM
1/2 ∼ α

4π

〈D4〉
Λ7 ∼ αg4

4π
Λ. (82)

For a further investigation on raising the gaugino masses through D-term gauge mediation, cf. 
also Ref. [34]. Finally, also when SUSY breaking is communicated to the visible sector through 
anomaly mediation, the additional D-term can help to stabilize the otherwise tachyonic scalars, 
if the MSSM fields carry suitable charges under the U(1) symmetry [35].

In conclusion, we find that in phenomenologically viable setups the sparticle mass scale is 
controlled by the dynamical scale Λ, which is typically very large, cf. Eq. (33), far beyond the 
range of collider searches. In order to obtain a lighter sparticle spectrum, we would have to take 
the gauge coupling constant g to extremely small values, which may be less well motivated from 
a phenomenological point of view. On the other hand, g may be naturally suppressed for some 
specific physical reason. A more thorough investigation of this question is left for future work.

4.2. Cosmic inflation driven by a dynamical D-term

In the previous section, we investigated the effect of the dynamically generated FI-term on 
the mediation of SUSY breaking to the visible sector, assuming that both 〈|F |〉 and 〈D〉 remain 
unchanged until today. A further interesting situation arises when the D-term is responsible for 
a phase of cosmic inflation, ending once the D-term is absorbed by the VEV of another scalar 
field. Ensuring a (nearly) vanishing cosmological constant in the true vacuum then requires a can-
cellation among the contributions to the F-term potential, m2

3/2 = 〈|Ftot|2〉/(3M2
Pl), cf. Eq. (46). 

Inflation is hence driven by the D-term potential only, even though 〈D〉 < 〈|F |〉.
D-term hybrid inflation is an attractive, simple realization of cosmic inflation in SUSY [3]. 

The vacuum energy density driving inflation is provided by an (Abelian) FI-term. At the same 
time, the slope of the inflationary potential arises from radiative corrections due to perturbative 
Yukawa interactions of the inflaton field encoded in the tree-level superpotential,

Winf = γΦ0Φ+Φ−. (83)

Here, Φ0 contains the inflaton field φ and the Φ±, carrying opposite charges under the U(1)

symmetry associated with the FI-term, contain the ‘waterfall’ field, which is responsible for 
ending inflation by absorbing the effective FI-term in its VEV. γ denotes a Yukawa coupling.

D-term hybrid inflation typically features super-Planckian field values. Hence, an embedding 
of the globally supersymmetric model into an effective SUGRA framework is mandatory. How-
ever, as discussed in Section 1, coupling a constant FI-term to SUGRA poses serious difficulties 
and the field-dependent FI-terms discussed in the literature so far are generically fixed to the 
Planck scale. This renders them useless for D-term hybrid inflation, where the measurement of 
the amplitude of the scalar power spectrum fixes the magnitude of the FI-term to a value close 
to the GUT scale. On the other hand, using the dynamically generated FI-term described in 
the present paper, the implementation of D-term hybrid inflation is straightforward. As long as 
〈Φ±〉 = 0, a large vacuum energy density, V0 = 1

2g2ξ2, is generated by the D-term, cf. Eq. (28). 
Once the waterfall field absorbs ξ in its VEV, the D-term scalar potential vanishes and a flat 
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Minkowski vacuum (with SUSY broken by nonvanishing F-terms) is recovered. In this context, 
successful D-term hybrid inflation fixes the scale of SUSY breaking to ΛSUSY �

√|ξ | ∼ ΛGUT.
This setup brings two important advantages over previous approaches. First, the FI-term can 

be easily generated at the GUT scale, as required by the data on the cosmic microwave back-
ground. Second, since the local U(1) symmetry under which the Φ± are charged is broken by 
the meson VEVs from the outset, no local cosmic strings are generated at the end of inflation. In 
general, we expect Φ± to couple to other fields charged under the U(1) symmetry via (higher-
dimensional) operators which are U(1)-invariant, but not invariant under Φ± phase rotations, e.g. 
K ⊃ Φ−Φ−Z+Z+/M2

Pl. In this case, the global symmetry associated with a rotation of the VEV 
of the waterfall field in the complex plane is explicitly broken, and no global cosmic strings are 
formed. If one forbids these terms by imposing an additional symmetry, then the phase transition 
ending inflation may, after all, produce topological defects associated with the breaking of just 
this symmetry. However, we stress that this is not the generic case and hence the production of 
cosmic strings at the end of inflation can be easily avoided. This extends the parameter space 
of D-term hybrid inflation to larger values of ξ and hence smaller values of the scalar spectral 
index ns , i.e. into a phenomenologically interesting regime, which is otherwise ruled out by the 
observational bound on the tension of cosmic U(1) strings [36].

A concrete realization of D-term hybrid inflation in SUGRA requires the choice of a suitable 
Kähler potential to resolve the eta problem. Here, an attractive possibility is to impose a shift 
symmetry along, say, the imaginary component Im{φ} of the inflaton field φ, so that the tree-level 
Kähler potential no longer depends on Im{φ}, but only on the real component Re{φ},

Φ0 → Φ0 + iαMPl, α ∈ R ⇒ K = 1

2

(
Φ0 + Φ

†
0

)2 + Φ
†
+Φ+ + Φ

†
−Φ−. (84)

Such a choice of the Kähler potential then allows for D-term inflation taking place in a chaotic 
regime, at field values high above the Planck scale, Im{φ} � MPl. The large inflaton field excur-
sion �φ in this scenario then results in a large tensor-to-scalar ratio in accord with the large value 
recently claimed by the BICEP2 Collaboration [37]. The idea of ‘chaotic D-term inflation’ has 
been proposed and investigated in Ref. [38] and recently been applied in Ref. [39]. Alternatively, 
one may assume a Kähler potential of the no-scale type, which leads to a small tensor-to-scalar 
ratio in accord with the bound on this observable deduced from the PLANCK data [40]. Such a 
scenario has, for instance, been studied in Ref. [41].

5. Conclusions and outlook

The appearance of FI-terms in SUGRA is plagued by serious problems. On the one hand, 
fundamental, genuine FI-terms are very difficult, if not even impossible to realize in minimal 
SUGRA. Field-dependent FI-terms, on the other hand, can arise in the low-energy effective the-
ory, e.g. via the Green–Schwarz mechanism in string theory. But their magnitude is generically 
found to be restricted to values around the Planck scale. In this paper, we have proposed a dy-
namical mechanism to generate a nonzero effective D-term which overcomes these limitations.

Our starting point is the IYIT model of dynamical SUSY breaking—a strongly coupled su-
persymmetric SP(Nc) gauge theory with Nf = Nc + 1 flavors. In this DSB model, SUSY is 
spontaneously broken via the interplay of the deformed moduli constraint and tree-level Yukawa 
interactions that stabilize all flat directions in moduli space. Gauging an Abelian subgroup of 
the total flavor symmetry, the nonvanishing VEVs of the charged composite states at low en-
ergies then result (for generic values of the Yukawa couplings) in a nonzero effective D-term. 
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This D-term can be interpreted as a field-dependent FI-term, the scale of which is determined 
by the dynamical scale Λ. As the scale Λ can be freely varied over many orders of magnitude, 
our dynamical mechanism hence allows for the generation of FI-terms at any scale between 
O(100) TeV and the Planck scale. Below the dynamical scale, but above the U(1) vector boson 
mass scale (which is suppressed by the small U(1) gauge coupling constant), the D-term acts as 
a genuine, constant FI-term. Moreover, the scalar modulus field ensuring the gauge invariance of 
the FI-term turns out to be automatically stabilized by the large IYIT F-term, rendering it para-
metrically heavier than the gravitino. The variable magnitude of our effective FI-term, the built-in 
dynamical stabilization of the modulus field and the large hierarchy between the SUSY breaking 
scale and the vector boson mass scale represent three major advantages of our mechanism over 
its stringy alternative based on the Green–Schwarz mechanism.

A minimal realization of dynamical mechanism is accomplished in the SP(1) version of the 
IYIT model of dynamical SUSY breaking. This minimal scenario already suffices to illustrate 
all key features of our mechanism for the generation of an effective FI-term. It can be straight-
forwardly extended to the more general scenario of strongly interacting SP(Nc) dynamics. On 
the other hand, DSB models in which the SUSY breaking scale is suppressed by some power 
of Λ/MPl turn out to be problematic: As we demonstrate for the case of SU(Nc) dynamics, 
the U(1) vector field then acquires a very large mass, so that it completely decouples from the 
low-energy physics. At sub-Planckian energies, there is hence no longer an auxiliary D field 
present in the theory, which precludes the possibility of having an effective FI-term. At the same 
time, the SUSY breaking dynamics themselves may be endangered, once SUGRA corrections 
are properly taken into account. This is an even more severe problem, which goes beyond the 
question of whether or not it is possible to consistently generate an effective FI-term.

Dynamically generated D-terms open up a wide range of applications in SUSY model build-
ing. SUSY breaking via nonvanishing F-terms is inherent in this setup and its scale is set by 
the dynamical scale of the strong interactions; the gravitino mass is in particular given by 
m3/2 ∼ Λ2/MPl. In addition, nonvanishing D-terms contribute to the soft masses. In particular 
in gauge mediation, this yields phenomenologically interesting improvements over pure F-term 
SUSY breaking, as we have briefly reviewed in Section 4.1. Alternatively, if Λ is of order of 
the GUT scale, the dynamically generated D-term can be the source of cosmic inflation. Here, 
the simplest inflationary model featuring fields in the inflaton sector that are charged under the 
U(1) symmetry, D-term hybrid inflation, gives results in accordance with current observations. 
Remarkably enough, since the U(1) gauge symmetry is spontaneously broken from the outset, 
the cosmic string problem (which otherwise rules out the simplest model) is now absent.

Open questions remain. In this paper, we have focused on D-terms generated by gauging an 
Abelian flavor symmetry present in a certain class of vector-like DSB models. It remains to be 
investigated whether our mechanism can also be extended to non-Abelian flavor symmetries as 
well as to alternative DSB models. Furthermore, the mechanism presented here might be em-
bedded into conformal SUSY breaking models, which would promise the possibility to combine 
a high SUSY breaking scale during inflation with a low SUSY breaking scale in the true vac-
uum [21]. Moreover, we expect further possible applications in the context of model building 
in supersymmetric gauge theories. For example, given the possibility of taking Λ to be of the 
order of the GUT scale, it would be interesting to identify the U(1) as part of a GUT group. For 
example, an identification with U(1)B−L, where B − L denotes the difference between baryon 
number B and lepton number L, would allow to link the scales of cosmic inflation, leptogenesis 
and SUSY breaking in an intriguing way. However, in this case, the requirement that the effective 
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FI-term not be absorbed in the VEV of any standard model field adds additional constraints and 
we leave a further investigation of this question to future work.
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