58 research outputs found

    3D structured illumination microscopy of mammalian embryos and spermatozoa

    Get PDF
    Background: Super-resolution fluorescence microscopy performed via 3D structured illumination microscopy (3D-SIM) is well established on flat, adherent cells. However, blastomeres of mammalian embryos are non-adherent, round and large. Scanning whole mount mammalian embryos with 3D-SIM is prone to failure due to the movement during scanning and the large distance to the cover glass. Results: Here we present a highly detailed protocol that allows performing 3D-SIM on blastomeres of mammalian embryos with an image quality comparable to scans in adherent cells. This protocol was successfully tested on mouse, rabbit and cattle embryos and on rabbit spermatozoa. Conclusions: Our protocol provides detailed instructions on embryo staining, blastomere isolation, blastomere attachment, embedding, correct oil predictions, scanning conditions, and oil correction choices after the first scan. Finally, the most common problems are documented and solutions are suggested. To our knowledge, this protocol presents for the first time a highly detailed and practical way to perform 3D-SIM on mammalian embryos and spermatozoa

    3D structured illumination microscopy of mammalian embryos and spermatozoa

    Get PDF
    Background: Super-resolution fluorescence microscopy performed via 3D structured illumination microscopy (3D-SIM) is well established on flat, adherent cells. However, blastomeres of mammalian embryos are non-adherent, round and large. Scanning whole mount mammalian embryos with 3D-SIM is prone to failure due to the movement during scanning and the large distance to the cover glass. Results: Here we present a highly detailed protocol that allows performing 3D-SIM on blastomeres of mammalian embryos with an image quality comparable to scans in adherent cells. This protocol was successfully tested on mouse, rabbit and cattle embryos and on rabbit spermatozoa. Conclusions: Our protocol provides detailed instructions on embryo staining, blastomere isolation, blastomere attachment, embedding, correct oil predictions, scanning conditions, and oil correction choices after the first scan. Finally, the most common problems are documented and solutions are suggested. To our knowledge, this protocol presents for the first time a highly detailed and practical way to perform 3D-SIM on mammalian embryos and spermatozoa

    Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos

    Get PDF
    Embryonic development is initially controlled by maternal RNAs and proteins stored in the oocyte, until gene products gradually generated by the embryo itself take over. Major embryonic genome activation (EGA) in bovine embryos occurs at the eight-to 16-cell stage. Morphological observations, such as size of blastomeres and distribution of microvilli, suggested heterogeneity among individual cells already at this developmental stage. To address cell heterogeneity on the transcriptome level, we performed single-cell RNA sequencing of 161 blastomeres from 14 in vitro produced bovine embryos at Day 2 (n = 6) and Day 3 (n = 8) post fertilization. Complementary DNA libraries were prepared using the Single-Cell RNA-Barcoding and Sequencing protocol and sequenced. Non-supervised clustering of single-cell transcriptome profiles identified six clusters with specific sets of genes. Most embryos were comprised of cells from at least two different clusters. Sorting cells according to their transcriptome profiles resulted in a non-branched pseudo-time line, arguing against major lineage inclination events at this developmental stage. In summary, our study revealed heterogeneity of transcriptome profiles among single cells in bovine Day 2 and Day 3 embryos, suggesting asynchronous blastomere development during the phase of major EGA

    Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In mammals the parental genomes are epigenetically reprogrammed after fertilization. This reprogramming includes a rapid demethylation of the paternal (sperm-derived) chromosomes prior to DNA replication in zygotes. Such active DNA demethylation in the zygote has been documented for several mammalian species, including mouse, rat, pig, human and cow, but questioned to occur in rabbit.</p> <p>Results</p> <p>When comparing immunohistochemical patterns of antibodies against 5-methyl-cytosine, H3K4me3 and H3K9me2 modifications we observe similar pronuclear distribution and dynamics in mouse, bovine and rabbit zygotes. In rabbit DNA demethylation of the paternal chromosomes occurs at slightly advanced pronuclear stages. We also show that the rabbit oocyte rapidly demethylates DNA of donor fibroblast after nuclear transfer.</p> <p>Conclusion</p> <p>Our data reveal that major events of epigenetic reprogramming during pronuclear maturation, including mechanisms of active DNA demethylation, are apparently conserved among mammalian species.</p

    Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Get PDF
    Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs) and live pigs carrying a latent TP53(R167H) mutant allele, orthologous to oncogenic human mutant TP53(R175H) and mouse Trp53(R172H), that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H) mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H) allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H) mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal

    Dual Fluorescent Reporter Pig for Cre Recombination: Transgene Placement at the ROSA26 Locus

    Get PDF
    We are extending the Cre/loxP site-specific recombination system to pigs, focussing on conditional and tissue-specific expression of oncogenic mutations to model human cancers. Identifying the location, pattern and extent of Cre recombination in vivo is an important aspect of this technology. Here we report pigs with a dual fluorochrome cassette under the control of the strong CAG promoter that switches expression after Cre-recombination, from membrane-targeted tandem dimer Tomato to membrane-targeted green fluorescent protein. The reporter cassette was placed at the porcine ROSA26 locus by conventional gene targeting using primary mesenchymal stem cells, and animals generated by nuclear transfer. Gene targeting efficiency was high, and analysis of foetal organs and primary cells indicated that the reporter is highly expressed and functional. Cre reporter pigs will provide a multipurpose indicator of Cre recombinase activity, an important new tool for the rapidly expanding field of porcine genetic modification

    Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications

    Get PDF
    <div><p>The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided <i>NUP153</i> mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of <i>NUP153 </i>at MGA.</p></div

    Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle

    Get PDF
    The development of somatic cell nuclear transfer (SCNT) embryos critically depends on appropriate reprogramming and expression of pluripotency genes, such as Pou5f1/POU5F1 (previously known as Oct4/OCT4). To study POU5F1 transcription activation in living bovine SCNT embryos without interference by maternal POU5F1 mRNA, we generated chromosomally normal fetal fibroblast donor cells stably carrying a mouse Pou5f1 promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a single integration site without detectable EGFP expression. Morphologic and quantitative analyses of whole-mount SCNT embryos by confocal microscopy revealed robust initial activation of the Pou5f1 reporter gene during the fourth cell cycle. In Day 6 SCNT embryos EGFP expression levels were markedly higher than in Day 4 embryos but varied substantially between individual embryos, even at comparable cell numbers. Embryos with low EGFP levels had far more morphologically abnormal cell nuclei than those with high EGFP levels. Our data strongly suggest that bovine SCNT embryos consistently start activation of the POU5F1 promoter during the fourth cell cycle, whereas later in development the expression level substantially differs between individual embryos, which may be associated with developmental potential. In fibroblasts from phenotypically normal SCNT fetuses recovered on Day 34, the Pou5f1 reporter promoter was silent but was activated by a second round of SCNT. The restoration of pluripotency can be directly observed in living cells or SCNT embryos from such Pou5f1-EGFP transgenic fetuses, providing an attractive model for systematic investigation of epigenetic reprogramming in large mammals

    OCT4/POU5F1 is indispensable for the lineage differentiation of the inner cell mass in bovine embryos

    Get PDF
    The mammalian blastocyst undergoes two lineage segregations, that is, formation of the trophectoderm and subsequently differentiation of the hypoblast (HB) from the inner cell mass, leaving the epiblast (EPI) as the remaining pluripotent lineage. To clarify the expression patterns of markers specific for these lineages in bovine embryos, we analyzed day 7, 9, and 12 blastocysts completely produced in vivo by staining for OCT4, NANOG, SOX2 (EPI), and GATA6, SOX17 (HB) and identified genes specific for these developmental stages in a global transcriptomics approach. To study the role of OCT4, we generated OCT4-deficient (OCT4 KO) embryos via somatic cell nuclear transfer or in vitro fertilization. OCT4 KO embryos reached the expanded blastocyst stage by day 8 but lost NANOG and SOX17 expression, while SOX2 and GATA6 were unaffected. Blastocysts transferred to recipient cows from day 6 to 9 expanded, but the OCT4 KO phenotype was not rescued by the uterine environment. Exposure of OCT4 KO embryos to exogenous FGF4 or chimeric complementation with OCT4 intact embryos did not restore NANOG or SOX17 in OCT4-deficient cells. Our data show that OCT4 is required cell autonomously for the maintenance of pluripotency of the EPI and differentiation of the HB in bovine embryos

    Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle

    Get PDF
    The development of somatic cell nuclear transfer (SCNT) embryos critically depends on appropriate reprogramming and expression of pluripotency genes, such as Pou5f1/POU5F1 (previously known as Oct4/OCT4). To study POU5F1 transcription activation in living bovine SCNT embryos without interference by maternal POU5F1 mRNA, we generated chromosomally normal fetal fibroblast donor cells stably carrying a mouse Pou5f1 promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a single integration site without detectable EGFP expression. Morphologic and quantitative analyses of whole-mount SCNT embryos by confocal microscopy revealed robust initial activation of the Pou5f1 reporter gene during the fourth cell cycle. In Day 6 SCNT embryos EGFP expression levels were markedly higher than in Day 4 embryos but varied substantially between individual embryos, even at comparable cell numbers. Embryos with low EGFP levels had far more morphologically abnormal cell nuclei than those with high EGFP levels. Our data strongly suggest that bovine SCNT embryos consistently start activation of the POU5F1 promoter during the fourth cell cycle, whereas later in development the expression level substantially differs between individual embryos, which may be associated with developmental potential. In fibroblasts from phenotypically normal SCNT fetuses recovered on Day 34, the Pou5f1 reporter promoter was silent but was activated by a second round of SCNT. The restoration of pluripotency can be directly observed in living cells or SCNT embryos from such Pou5f1-EGFP transgenic fetuses, providing an attractive model for systematic investigation of epigenetic reprogramming in large mammals
    • …
    corecore