6 research outputs found

    Charge Transfer and Charge Trapping Processes in Ca- or Al-Co-doped Lu<sub>2</sub>SiO<sub>5</sub> and Lu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> Scintillators Activated by Pr<sup>3+</sup> or Ce<sup>3+</sup> Ions

    No full text
    Lutetium oxyorthosilicate Lu2SiO5 (LSO) and pyrosilicate Lu2Si2O7 (LPS) activated by Ce3+ or Pr3+ are known to be effective and fast scintillation materials for the detection of X-rays and γ-rays. Their performances can be further improved by co-doping with aliovalent ions. Herein, we investigate the Ce3+(Pr3+) → Ce4+(Pr4+) conversion and the formation of lattice defects stimulated by co-doping with Ca2+ and Al3+ in LSO and LPS powders prepared by the solid-state reaction process. The materials were studied by electron paramagnetic resonance (EPR), radioluminescence spectroscopy, and thermally stimulated luminescence (TSL), and scintillation decays were measured. EPR measurements of both LSO:Ce and LPS:Ce showed effective Ce3+ → Ce4+ conversions stimulated by Ca2+ co-doping, while the effect of Al3+ co-doping was less effective. In Pr-doped LSO and LPS, a similar Pr3+ → Pr4+ conversion was not detected by EPR, suggesting that the charge compensation of Al3+ and Ca2+ ions is realized via other impurities and/or lattice defects. X-ray irradiation of LPS creates hole centers attributed to a hole trapped in an oxygen ion in the neighborhood of Al3+ and Ca2+. These hole centers contribute to an intense TSL glow peak at 450–470 K. In contrast to LPS, only weak TSL peaks are detected in LSO and no hole centers are visible via EPR. The scintillation decay curves of both LSO and LPS show a bi-exponential decay with fast and slow component decay times of 10–13 ns and 30–36 ns, respectively. The decay time of the fast component shows a small (6–8%) decrease due to co-doping

    The strain-induced transitions of the piezoelectric, pyroelectric, and electrocaloric properties of the CuInP2S6 films

    No full text
    Low-dimensional ferroelectrics, ferrielectrics, and antiferroelectrics are of urgent scientific interest due to their unusual polar, piezoelectric, electrocaloric, and pyroelectric properties. The strain engineering and strain control of the ferroelectric properties of layered two-dimensional van der Waals materials, such as CuInP2(S,Se)6 monolayers, thin films, and nanoflakes, are of fundamental interest and especially promising for their advanced applications in nanoscale nonvolatile memories, energy conversion and storage, nano-coolers, and sensors. Here, we study the polar, piezoelectric, electrocaloric, and pyroelectric properties of thin strained films of a ferrielectric CuInP2S6 covered by semiconducting electrodes and reveal an unusually strong effect of a mismatch strain on these properties. In particular, the sign of the mismatch strain and its magnitude determine the complicated behavior of piezoelectric, electrocaloric, and pyroelectric responses. The strain effect on these properties is opposite, i.e., “anomalous,” in comparison with many other ferroelectric films, for which the out-of-plane remanent polarization, piezoelectric, electrocaloric, and pyroelectric responses increase strongly for tensile strains and decrease or vanish for compressive strains

    Untangling the controversy on Ce3+luminescence in LaAlO3crystals

    Get PDF
    The work was supported by the Czech Science Foundation project no. 18-14789S and by Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760). We acknowledge MAX IV Laboratory for time on Beamline FinEstBeAMS under Proposal 20180572. The research leading to this result was supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. The Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, Project CAMART2.Aluminum perovskites represent an important group of promising scintillation materials with excellent proportionality and energy resolution, but due to difficulties in crystal growth not much attention has been paid to them. We studied a Ce-doped LaAlO3lanthanum-aluminum perovskite (LaAP) because of its easy crystal growth facilitated by the large La3+cations in the matrix. Moreover, recent observations of intense blue luminescence by some researchers show that the potential of this material could not be ruled out. On the other hand, some reports claim that Ce3+luminescence is completely absent in the LaAP matrix. Therefore, we have decided to study this material in much greater detail using an extended set of correlated experiments to explain the observed discrepancies and underlying phenomena. Crystal growth by the micro-pulling-down method is reported together with the luminescence and scintillation properties. We demonstrate the influence of inclusions of other aluminate phases created during the crystal growth on the luminescence processes. The existence of the phases was simultaneously confirmed by observations using a scanning electron microscope, cathodoluminescence, energy-dispersive X-ray analysis and electron paramagnetic resonance (EPR), which were correlated with photoluminescence and scintillation studies. The EPR evidenced the incorporation of Ce ions in different environments comprising the LaAP matrix and inclusions. Based on these results, the luminescence mechanism is proposed and discussed and the low scintillation efficiency of the Ce-doped LaAP is explained together with the discrepancies in the literature. © 2022 The authors. --//-- Published under the CC BY and CC BY-NC licence.Czech Science Foundation project no. 18-14789S; Ministerstvo Školství, Mládeže a Tělovýchovy 730872, SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760; CALIPSOplus under the Grant Agreement 730872; The Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, Project CAMART2

    Inherent Spin-Polarization Coupling in a Magnetoelectric Vortex

    No full text
    Solid-state materials are currently being explored as a platform for the manipulation of spins for spintronics and quantum information science. More broadly, a wide spectrum of ferroelectric materials, spanning from inorganic oxides to polymeric systems such as PVDF, present a different approach to explore quantum phenomena in which the spins are set and manipulated with electric fields. Using dilute Fe3+-doped ferroelectric PbTiO3-SrTiO3 superlattices as a model system, we demonstrate intrinsic spin-polarization control of spin directionality in complex ferroelectric vortices and skyrmions. Electron paramagnetic resonance (EPR) spectra show that the spins in the Fe3+ ion are strongly coupled to the local polarization and preferentially aligned perpendicular to the ferroelectric polar c axis in this complex vortex structure. The effect of polarization-spin directionality is corroborated by first-principles calculations, demonstrating the variation of the spin directionality with the polar texture and offering the potential for future quantum analogues of macroscopic magnetoelectric devices
    corecore