5 research outputs found

    Cellular and humoral functional responses after BNT162b2 mRNA vaccination differ longitudinally between naive and subjects recovered from COVID-19

    Get PDF
    We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.C.d.F., J.G.-P., and J.A. are supported by Instituto de Salud Carlos III (ISCII). We thank JM Ligos and Cytek Biosciences for their technical support. Research in E.L.-C.’s lab was supported by Fundación Familia Alonso, Santander Bank, Real Seguros, Fundación Mutua Madrileña, Fundación Uria, Fundación La Caixa, and Ayuntamiento de Madrid.S

    Study protocol for a phase II, multicentre, prospective, non-randomised clinical trial to assess the safety and efficacy of infusing allogeneic activated and expanded natural killer cells as consolidation therapy for paediatric acute myeloblastic leukaemia.

    No full text
    Acute myeloblastic leukaemia (AML) constitutes the second most common haematological malignancy in the paediatric population. Current treatment regimens are based on the administration of polychemotherapy, combining high doses of cytarabine with anthracyclines and topoisomerase inhibitors. Allogeneic haematopoietic stem cell transplantation (HSCT) is an option for high-risk patients with AML (and for intermediate-risk patients if a sibling donor is available). With this strategy, AML survival has increased substantially; however, it has remained stagnant at approximately 60%, with relapse being the principal culprit. The predominant role of the immune system and natural killer (NK) cells in controlling paediatric AML has gained importance within the context of HSCT. In this protocol, we propose incorporating this cell therapy as an adjuvant treatment through the infusion of activated and expanded haploidentical NK (NKAE) cells in paediatric patients with AML who are in cytological remission after completing consolidation therapy, and with no indication for HSCT. Patients up to 30 years of age, diagnosed with AML, in their first cytological remission, who have completed both the induction and the consolidation phases of chemotherapy and do not meet the criteria for allogeneic HSCT are eligible. The patients will receive two doses of NKAE cells once a week, using a GMP K562-mbIL15-41BBL stimulus from a haploidentical donor and interleukin 2 subcutaneously. The patients will then be followed up for 36 months to assess the primary endpoint, which is the probability of relapse after NK cell infusion. This clinical trial was approved by the Clinical Research Ethics Committee of La Paz University Hospital and The Spanish Agency of Medicines and Medical Devices. Findings will be disseminated through peer-reviewed publications, conference presentations and community reporting. EudraCT code: 2015-001901-15, ClinicalTrials.gov Identifier: NCT02763475

    Fused Cells between Human-Adipose-Derived Mesenchymal Stem Cells and Monocytes Keep Stemness Properties and Acquire High Mobility

    No full text
    Human-adipose-derived mesenchymal stem cells (hADMSCs) are multipotent stem cells which have become of great interest in stem-cell therapy due to their less invasive isolation. However, they have limited migration and short lifespans. Therefore, understanding the mechanisms by which these cells could migrate is of critical importance for regenerative medicine. Methods: Looking for novel alternatives, herein, hADMSCs were isolated from adipose tissue and co-cultured with human monocytes ex vivo. Results: A new fused hybrid entity, a foam hybrid cell (FHC), which was CD90+CD14+, resulted from this co-culture and was observed to have enhanced motility, proliferation, immunomodulation properties, and maintained stemness features. Conclusions: Our study demonstrates the generation of a new hybrid cellular population that could provide migration advantages to MSCs, while at the same time maintaining stemness properties

    Differential Immune Checkpoint and Ig-like V-Type Receptor Profiles in COVID-19: Associations with Severity and Treatment

    No full text
    Identifying patients’ immune system status has become critical to managing SARS-CoV-2 infection and avoiding the appearance of secondary infections during a hospital stay. Despite the high volume of research, robust severity and outcome markers are still lacking in COVID-19. We recruited 87 COVID-19 patients and analyzed, by unbiased automated software, 356 parameters at baseline emergency department admission including: high depth immune phenotyping and immune checkpoint expression by spectral flow cytometry, cytokines and other soluble molecules in plasma as well as routine clinical variables. We identified 69 baseline alterations in the expression of immune checkpoints, Ig-like V type receptors and other immune population markers associated with severity (O2 requirement). Thirty-four changes in these markers/populations were associated with secondary infection appearance. In addition, through a longitudinal sample collection, we described the changes which take place in the immune system of COVID-19 patients during secondary infections and in response to corticosteroid treatment. Our study provides information about immune checkpoint molecules and other less-studied receptors with Ig-like V-type domains such as CD108, CD226, HVEM (CD270), B7H3 (CD276), B7H5 (VISTA) and GITR (CD357), defining these as novel interesting molecules in severe and corticosteroids-treated acute infections
    corecore