8,730 research outputs found
Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin.
The substrate specificities of dynein, kinesin, and myosin substrate turnover activity and cytoskeletal filament-driven translocation were examined using 15 ATP analogues. The dyneins were more selective in their substrate utilization than bovine brain kinesin or muscle heavy meromyosin, and even different types of dyneins, such as 14S and 22S dynein from Tetrahymena cilia and the beta-heavy chain-containing particle from the outer-arm dynein of sea urchin flagella, could be distinguished by their substrate specificities. Although bovine brain kinesin and muscle heavy meromyosin both exhibited broad substrate specificities, kinesin-induced microtubule translocation varied over a 50-fold range in speed among the various substrates, whereas heavy meromyosin-induced actin translocation varied only by fourfold. With both kinesin and heavy meromyosin, the relative velocities of filament translocation did not correlate well with the relative filament-activated substrate turnover rates. Furthermore, some ATP analogues that did not support the filament translocation exhibited filament-activated substrate turnover rates. Filament-activated substrate turnover and power production, therefore, appear to become uncoupled with certain substrates. In conclusion, the substrate specificities and coupling to motility are distinct for different types of molecular motor proteins. Such nucleotide "fingerprints" of enzymatic activities of motor proteins may prove useful as a tool for identifying what type of motor is involved in powering a motility-related event that can be reconstituted in vitro
Energy resource management under the influence of the weekend transition considering an intensive use of electric vehicles
Energy resource scheduling is becoming increasingly
important, as the use of distributed resources is intensified and of
massive electric vehicle is envisaged. The present paper proposes
a methodology for day-ahead energy resource scheduling for
smart grids considering the intensive use of distributed
generation and Vehicle-to-Grid (V2G). This method considers
that the energy resources are managed by a Virtual Power Player
(VPP) which established contracts with their owners. It takes into
account these contracts, the users' requirements subjected to the
VPP, and several discharge price steps. The full AC power flow
calculation included in the model takes into account network
constraints. The influence of the successive day requirements on
the day-ahead optimal solution is discussed and considered in the
proposed model. A case study with a 33-bus distribution network
and V2G is used to illustrate the good performance of the
proposed method
Rapid Spatial Learning Controls Instinctive Defensive Behavior in Mice
Instinctive defensive behaviors are essential for animal survival. Across the animal kingdom, there are sensory stimuli that innately represent threat and trigger stereotyped behaviors such as escape or freezing [1–4]. While innate behaviors are considered to be hard-wired stimulus-responses [5], they act within dynamic environments, and factors such as the properties of the threat [6–9] and its perceived intensity [1, 10, 11], access to food sources [12–14], and expectations from past experience [15, 16] have been shown to influence defensive behaviors, suggesting that their expression can be modulated. However, despite recent work [2, 4, 17–21], little is known about how flexible mouse innate defensive behaviors are and how quickly they can be modified by experience. To address this, we have investigated the dependence of escape behavior on learned knowledge about the spatial environment and how the behavior is updated when the environment changes acutely. Using behavioral assays with innately threatening visual and auditory stimuli, we show that the primary goal of escape in mice is to reach a previously memorized shelter location. Memory of the escape target can be formed in a single shelter visit lasting less than 20 s, and changes in the spatial environment lead to a rapid update of the defensive action, including changing the defensive strategy from escape to freezing. Our results show that although there are innate links between specific sensory features and defensive behavior, instinctive defensive actions are surprisingly flexible and can be rapidly updated by experience to adapt to changing spatial environments
Calibration of a single atom detector for atomic micro chips
We experimentally investigate a scheme for detecting single atoms
magnetically trapped on an atom chip. The detector is based on the
photoionization of atoms and the subsequent detection of the generated ions. We
describe the characterization of the ion detector with emphasis on its
calibration via the correlation of ions with simultaneously generated
electrons. A detection efficiency of 47.8% (+-2.6%) is measured, which is
useful for single atom detection, and close to the limit allowing atom counting
with sub-Poissonian uncertainty
Thermodynamics of an attractive 2D Fermi gas
Thermodynamic properties of matter are conveniently expressed as functional
relations between variables known as equations of state. Here we experimentally
determine the compressibility, density and pressure equations of state for an
attractive 2D Fermi gas in the normal phase as a function of temperature and
interaction strength. In 2D, interacting gases exhibit qualitatively different
features to those found in 3D. This is evident in the normalized density
equation of state, which peaks at intermediate densities corresponding to the
crossover from classical to quantum behaviour.Comment: Contains minor revision
Quantifying innovation in surgery
Objectives: The objectives of this study were to assess the applicability of patents and publications as metrics of surgical technology and innovation; evaluate the historical relationship between patents and publications; develop a methodology that can be used to determine the rate of innovation growth in any given health care technology. Background: The study of health care innovation represents an emerging academic field, yet it is limited by a lack of valid scientific methods for quantitative analysis. This article explores and cross-validates 2 innovation metrics using surgical technology as an exemplar. Methods: Electronic patenting databases and the MEDLINE database were searched between 1980 and 2010 for “surgeon” OR “surgical” OR “surgery.” Resulting patent codes were grouped into technology clusters. Growth curves were plotted for these technology clusters to establish the rate and characteristics of growth. Results: The initial search retrieved 52,046 patents and 1,801,075 publications. The top performing technology cluster of the last 30 years was minimally invasive surgery. Robotic surgery, surgical staplers, and image guidance were the most emergent technology clusters. When examining the growth curves for these clusters they were found to follow an S-shaped pattern of growth, with the emergent technologies lying on the exponential phases of their respective growth curves. In addition, publication and patent counts were closely correlated in areas of technology expansion. Conclusions: This article demonstrates the utility of publically available patent and publication data to quantify innovations within surgical technology and proposes a novel methodology for assessing and forecasting areas of technological innovation
Modelling the [Fe II] λ1.644 μm outflow and comparison with H₂ and H+ kinematics in the inner 200 pc of NGC 1068
We map the kinematics of the inner (200 pc) narrow-line region (NLR) of the Seyfert 2 galaxy NGC 1068 using the instrument Near-infrared Integral Field Spectrograph and adaptive optics at the Gemini North telescope. Channel maps and position–velocity diagrams are presented at a spatial resolution of ≅8 pc and spectral resolution ∼5300 in the emission lines [Fe II] λ1.644 μm, H₂ λ2.122 μm and Brγ. The [Fe II] emission line provides a better coverage of the NLR outflow than the previously used [O III] λ5007 emission line, extending beyond the area of the bipolar cone observed in Brγ and [O III]. This is mainly due to the contribution of the redshifted channels to the north-east of the nucleus, supporting its origin in a partial ionized zone with additional contribution from shocks of the outflowing gas with the galactic disc. We modelled the kinematics and geometry of the [Fe II] emitting gas finding good agreement with the data for outflow models with conical and lemniscate (or hourglass) geometry. We calculate a mass outflow rate of 1.9⁺²ˍ₁ M⊙ yr⁻¹ but a power for the outflow of only 0.08 per cent LBol. The molecular (H₂) gas kinematics is completely distinct from that of [Fe II] and Brγ, showing radial expansion in an off-centred ∼100 pc radius ring in the galaxy plane. The expansion velocity decelerates from ≈200 km s−1 in the inner border of the ring to approximately zero at the outer border where our previous studies found a 10 Myr stellar population
- …
