169 research outputs found

    A Chlamydia trachomatis strain with a chemically generated amino acid substitution (P370L) in the cthtrA gene shows reduced elementary body production Microbial genetics, genomics and proteomics

    Get PDF
    © 2015 Marsh et al. Background: Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism's intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. Methods: SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. Results: The strain harboring the SNV with the most marked impact on proteolysis (cthtrA P370L) was detected to have a significant reduction in the production of infectious elementary bodies. Conclusions: This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle

    Coccidioidomycosis Incidence in Arizona Predicted by Seasonal Precipitation

    Get PDF
    The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995–2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure enabled us to construct a “primary” exposure season that spans August-March and a “secondary” season that spans April–June which are then used in subsequent analyses. We show that October–December precipitation is positively associated with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County (R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with concurrent precipitation in Maricopa (R = −0.79, p = 0.004) and Pima (R = −0.64, p = 0.019), possibly due to reduced spore dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the “grow and blow” hypothesis

    Genetic Transformation of an Obligate Anaerobe, P. gingivalis for FMN-Green Fluorescent Protein Expression in Studying Host-Microbe Interaction

    Get PDF
    The recent introduction of “oxygen-independent” flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) is of major interest to both eukaryotic and prokaryotic microbial biologists. Accordingly, we demonstrate for the first time that an obligate anaerobe, the successful opportunistic pathogen of the oral cavity, Porphyromonas gingivalis, can be genetically engineered for expression of the non-toxic green FbFP. The resulting transformants are functional for studying dynamic bacterial processes in living host cells. The visualization of the transformed P. gingivalis (PgFbFP) revealed strong fluorescence that reached a maximum emission at 495 nm as determined by fluorescence microscopy and spectrofluorometry. Human primary gingival epithelial cells (GECs) were infected with PgFbFP and the bacterial invasion of host cells was analyzed by a quantitative fluorescence microscopy and antibiotic protection assays. The results showed similar levels of intracellular bacteria for both wild type and PgFbFP strains. In conjunction with organelle specific fluorescent dyes, utilization of the transformed strain provided direct and accurate determination of the live/metabolically active P. gingivalis' trafficking in the GECs over time. Furthermore, the GECs were co-infected with PgFbFP and the ATP-dependent Clp serine protease-deficient mutant (ClpP-) to study the differential fates of the two strains within the same host cells. Quantitative co-localization analyses displayed the intracellular PgFbFP significantly associated with the endoplasmic reticulum network, whereas the majority of ClpP- organisms trafficked into the lysosomes. Hence, we have developed a novel and reliable method to characterize live host cell-microbe interactions and demonstrated the adaptability of FMN-green fluorescent protein for studying persistent host infections induced by obligate anaerobic organisms

    Nature and consequences of interactions between Salmonella enterica serovar Dublin and host cells in cattle

    Get PDF
    International audienceAbstractSalmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity

    Divergent Roles of Salmonella Pathogenicity Island 2 and Metabolic Traits during Interaction of S. enterica Serovar Typhimurium with Host Cells

    Get PDF
    The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium) with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied

    Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current

    Get PDF
    Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) δC mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late INa) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late INa inhibitor ranolazine (Ran, 5 μmol/L). Force–frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm2; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm2 (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late INa was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδC overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late INa. Inhibition of elevated late INa had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδC TG mice. Thus, late INa inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased

    Positive feedback and noise activate the stringent response regulator Rel in mycobacteria

    Get PDF
    Phenotypic heterogeneity in an isogenic, microbial population enables a subset of the population to persist under stress. In mycobacteria, stresses like nutrient and oxygen deprivation activate the stress response pathway involving the two-component system MprAB and the sigma factor, SigE. SigE in turn activates the expression of the stringent response regulator, rel. The enzyme polyphosphate kinase 1 (PPK1) regulates this pathway by synthesizing polyphosphate required for the activation of MprB. The precise manner in which only a subpopulation of bacterial cells develops persistence, remains unknown. Rel is required for mycobacterial persistence. Here we show that the distribution of rel expression levels in a growing population of mycobacteria is bimodal with two distinct peaks corresponding to low (L) and high (H) expression states, and further establish that a positive feedback loop involving the mprAB operon along with stochastic gene expression are responsible for the phenotypic heterogeneity. Combining single cell analysis by flow cytometry with theoretical modeling, we observe that during growth, noise-driven transitions take a subpopulation of cells from the L to the H state within a "window of opportunity" in time preceding the stationary phase. We find evidence of hysteresis in the expression of rel in response to changing concentrations of PPK1. Our results provide, for the first time, evidence that bistability and stochastic gene expression could be important for the development of "heterogeneity with an advantage" in mycobacteria.Comment: Accepted for publication in PLoS On
    corecore