44 research outputs found

    Challenging metastatic breast cancer with the natural defensin PvD1

    Get PDF
    © The Royal Society of Chemistry 2017Metastatic breast cancer is a very serious life threatening condition that poses many challenges for the pharmaceutical development of effective chemotherapeutics. As the therapeutics targeted to the localized masses in breast improve, metastatic lesions in the brain slowly increase in their incidence compromising successful treatment outcomes overall. The blood-brain-barrier (BBB) is one important obstacle for the management of breast cancer brain metastases. New therapeutic approaches are in demand for overcoming the BBB's breaching by breast tumor cells. In this work we demonstrate the potential dual role of a natural antimicrobial plant defensin, PvD1: it interferes with the formation of solid tumors in the breast and concomitantly controls adhesion of breast cancer cells to human brain endothelial cells. We have used a combination of techniques that probe PvD1's effect at the single cell level and reveal that this peptide can effectively damage breast tumor cells, leaving healthy breast and brain cells unaffected. Results suggest that PvD1 quickly internalizes in cancer cells but remains located in the membrane of normal cells with no significant damage to its structure and biomechanical properties. These interactions in turn modulate cell adhesiveness between tumor and BBB cells. PvD1 is a potential template for the design of innovative pharmacological approaches for metastatic breast cancer treatment: the manipulation of the biomechanical properties of tumor cells that ultimately prevent their attachment to the BBB.This work was supported by a grant from Laço (Portugal). The authors thank Fundação para a Ciência e a Tecnologia (FCT I.P., Portugal) for funding—PTDC/BBB-BQB/1693/2014 and LISBOA-01-0145-FEDER-007391, project co-financed by FEDER through POR Lisboa 2020 - Programa Operacional Regional de Lisboa, Portugal 2020, and by Fundação para a Ciência e a Tecnologia, and also acknowledge financial support from the Brazilian agencies CNPq, CAPES, and FAPERJ (E-26/203.090/2016; E-26/202.132/2015). Tiago N. Figueira, Filipa D. Oliveira and Diana Gaspar acknowledge FCT I.P. for fellowships SFRH/ BD/5283/2013, PD/BD/135046/2017 and SFRH/BPD/109010/2015. Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) is also acknowledged for funding: call H2020-MSCA-RISE-2014, Grant agreement 644167, 2015–2019. Prof. Teresa R. Pacheco (FMUL) and Prof. Alexandra Brito (FFUL) are acknowledged for providing the human breast cell lines and HBMEC primary culture, respectively.info:eu-repo/semantics/publishedVersio

    Plant defensin PvD1 modulates the membrane composition of breast tumour-derived exosomes

    Get PDF
    This journal is © The Royal Society of Chemistry 2019One of the most important causes of failure in tumour treatment is the development of resistance to therapy. Cancer cells can develop the ability to lose sensitivity to anti-neoplastic drugs during reciprocal crosstalk between cells and their interaction with the tumour microenvironment (TME). Cell-to-cell communication regulates a cascade of interdependent events essential for disease development and progression and can be mediated by several signalling pathways. Exosome-mediated communication is one of the pathways regulating these events. Tumour-derived exosomes (TDE) are believed to have the ability to modulate TMEs and participate in multidrug resistance mechanisms. In this work, we studied the effect of the natural defensin from common bean, PvD1, on the formation of exosomes by breast cancer MCF-7 cells, mainly the modulatory effect it has on the level of CD63 and CD9 tetraspanins. Moreover, we followed the interaction of PvD1 with biological and model membranes of selected composition, by biophysical and imaging techniques. Overall, the results show that PvD1 induces a dual effect on MCF-7 derived exosomes: the peptide attenuates the recruitment of CD63 and CD9 to exosomes intracellularly and binds to the mature exosomes in the extracellular environment. This work uncovers the exosomemediated anticancer action of PvD1, a potential nutraceutical agent.The authors thank Fundação para a Ciência e a Tecnologia (FCT I.P., Portugal) for funding – PTDC/BBB-BQB/1693/2014, and also acknowledge financial support from the Brazilian agencies CNPq, CAPES, and FAPERJ (E-26/203.090/2016; E-26/202.132/2015). Julia Skalska, Filipa D. Oliveira, Tiago N. Figueira and Diana Gaspar acknowledge FCT I.P. for fellowships PD/BD/114177/2016, PD/BD/135046/2017, SFRH/BD/5283/2013 and SFRH/BPD/109010/2015 respectively. Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) is also acknowledged for funding: call H2020-MSCA-RISE-2014, Grant agreement 644167, 2015–2019.info:eu-repo/semantics/publishedVersio

    Antimicrobial activity and mechanism of action of a thionin-like peptide from Capsicum annuum fruits and combinatorial treatment with fluconazole against Fusarium solani

    No full text
    Many Fusarium species are able to cause severe infections in plants as well as in animals and humans. Therefore, the discovery of new antifungal agents is of paramount importance. CaThi belongs to the thionins, which are cationic peptides with low molecular weights (∼5 kDa) that have toxic effects against various microorganisms. Herein, we study the mechanism of action of CaThi and its combinatory effect with fluconazole (FLC) against Fusarium solani. The mechanism of action of CaThi was studied by growth inhibition, viability, plasma membrane permeabilization, ROS induction, caspase activation, localization, and DNA binding capability, as assessed with Sytox green, DAB, FITC-VAD-FMK, CaThi-FITC, and gel shift assays. The combinatory effect of CaThi and FLC was assessed using a growth inhibition assay. Our results demonstrated that CaThi present a dose dependent activity and at the higher used concentration (50 µg mL−1) inhibits 83% of F. solani growth, prevents the formation of hyphae, permeabilizes membranes, induces endogenous H2O2, activates caspases, and localizes intracellularly. CaThi combined with FLC, at concentrations that alone do not inhibit F. solani, result in 100% death of F. solani when combined. The data presented in this study demonstrate that CaThi causes death of F. solani via apoptosis; an intracellular target may also be involved. Combined treatment using CaThi and FLC is a strong candidate for studies aimed at improved targeting of F. solani. This strategy is of particular interest because it minimizes selection of resistant microorganisms.Fil: Taveira, Gabriel B.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Mello, Érica O.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Carvalho, André O.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Regente, Mariana Clelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Pinedo, Marcela Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: de la Canal, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Rodrigues, Rosana. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; BrasilFil: Gomes, Valdirene M.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro; Brasi

    A sunflower lectin with antifungal properties and putative medical mycology applications

    No full text
    Lectins are carbohydrate-binding proteins with a high specificity for a variety of glycoconjugate sugar motifs. The jacalin-related lectins (JRL) are considered to be a small sub-family composed of galactose- and mannose-specific members. Using a proteomics approach, we have detected a 16 kDa protein (Helja) in sunflower seedlings that were further purified by mannose-agarose affinity chromatography. The aim of this work was to characterize the biological activity of Helja and to explore potential applications for the antifungal activity of this plant lectin against medically important yeasts. To initially assess the agglutination properties of the lectin, Saccharomyces cerevisiae cells were incubated with increasing concentrations of the purified lectin. At a concentration of 120 μg/ml, Helja clearly agglutinated these cells. The ability of different sugars to inhibit S. cerevisiae cell agglutination determined its carbohydrate-specificity. Among the monosaccharides tested, d-mannose had the greatest inhibitory effect, with a minimal concentration of 1.5 mM required to prevent cell agglutination. The antifungal activity was evaluated using pathogenic fungi belonging to the Candida and Pichia genera. We demonstrate that 200 μg/ml of Helja inhibited the growth of all yeasts, and it induced morphological changes, particularly through pseudohyphae formation on Candida tropicalis. Helja alters the membrane permeability of the tested fungi and is also able to induce the production of reactive oxygen species in C. tropicalis cells. We concluded that Helja is a mannose-binding JRL with cell agglutination capabilities and antifungal activity against yeasts. The biological properties of Helja may have practical applications in the control of human pathogens.Fil: Regente, Mariana Clelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Taveira, Gabriel B.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro;Fil: Pinedo, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Elizalde, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Ticchi, Ana Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Diz, Mariangela S. S.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro;Fil: Carvalho, Andre O.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro;Fil: de la Canal, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Gomes, Valdirene M.. Universidade Estadual Do Norte Fluminense Darcy Ribeiro
    corecore